Edición de «
Serie Aprender del Error - Graduandos/Geometría
»
Ir a la navegación
Ir a la búsqueda
Advertencia:
no has iniciado sesión. Tu dirección IP se hará pública si haces cualquier edición. Si
inicias sesión
o
creas una cuenta
, tus ediciones se atribuirán a tu nombre de usuario, además de otros beneficios.
Comprobación antispam. ¡
No
rellenes esto!
<span style="font-size:200%;;color: #e2007a">Geometría</span> <div style="float:right">__TOC__</div> {{#TwitterFBLike:left|like}} [[Archivo:2 GEOMETRIA-1.png|600px]] == <span style="color: #e2007a;">Presentación</span> == La evaluación es un elemento fundamental en el modelo de la calidad educativa; sin embargo, por sí misma, no mejora los aprendizajes. Es el uso que se haga de los resultados lo que impacta el alcance de las metas educativas del país. Con el objetivo de facilitar la vinculación de los resultados de la Evaluación Nacional de Graduandos con los procesos de enseñanza- aprendizaje que se dan en el aula, la Dirección General de Evaluación e Investigación Educativa –DIGEDUCA– del Ministerio de Educación, plantea este material como un instrumento para que docentes y directores puedan reflexionar acerca de los resultados obtenidos en el 2013. Se espera que esta reflexión incida en la tarea que cada docente realiza en cualquiera de las áreas curriculares del Nivel de Educación Media, del Ciclo de Educación Diversificada. == <span style="color: #e2007a;">Evaluación de Graduandos</span> == Anualmente todos los estudiantes que cursan el último año del ciclo diversificado participan en la Evaluación Nacional de Graduandos. El objetivo del proceso es determinar el nivel de los aprendizajes alcanzados por los alumnos al finalizar su paso por el sistema educativo. Para medir las habilidades desarrolladas, se evalúan contenidos declarativos y procedimentales en el contexto de competencias básicas para la vida. El área curricular de Matemáticas se incluye en la Evaluación Nacional de Graduandos ya que promueve el desarrollo de los procesos cognitivos necesarios para la comprensión cuantitativa de la realidad. Dentro de esta área se consolidan destrezas relacionadas con análisis, razonamiento y comunicación pertinente y eficaz de ideas, a partir del planteamiento, resolución e interpretación de problemas matemáticos (DIGECADE, 2010; DIGECUR, 2013a; DIGECUR, 2013b). Está vinculada directamente con la competencia básica 3: el uso del pensamiento lógico-matemático para la resolución de problemas de la vida cotidiana. Las pruebas de Matemáticas evalúan contenidos de sistemas numéricos, aritmética, geometría, trigonometría, álgebra, lógica matemática y estadística. En este documento se analizan, desde los procesos cognitivos, errores comunes que los estudiantes evaluados en el 2013 cometieron al resolver ítems de perímetro de figuras geométricas. {| style="background:#e2007a;border:1px solid #e2007a;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="55%" | <span style="color: #ffffff;"><center>'''Competencias básicas para la vida'''</center> Conjunto de aprendizajes (conocimientos, procedimientos y actitudes) imprescindibles y fundamentales para que todas las personas se realicen personalmente, se incorporen a la vida adulta de manera satisfactoria y participen activamente como miembros de la sociedad. <p style="text-align:right">Cfr. USAID, 2009, p. 5. |} == <span style="color: #e2007a;">¿Cómo usar este documento?</span> == {| style="margin:1em auto 1em auto" width="80%" | style="width:16%; border:2px solid #e2007a; border-radius:4px; padding:8px; font-size:100%; background:#e2007a; color:white"|<center>'''Lea'''</center> Lea la teoría que sustenta y justifica el contenido evaluado. | style="width:5%; color:#e2007a; font-size:300%; padding:10px"| <center>'''→'''</center> | style="width:16%;border:2px solid #e2007a;border-radius: 4px;padding:8px; font-size:100%; background:#e2007a; color:white"|<center>'''Analice'''</center> Analice el ítem clonado y su descripción. | style="width:5%; color:#e2007a; font-size:300%; padding:10px"| <center>'''→'''</center> | style="width:16%;border:2px solid #e2007a;border-radius: 4px;padding:8px; font-size:100%; background:#e2007a; color:white"|<center>'''Identifique'''</center> A través del análisis del error, identifique posibles debilidades de los estudiantes. | style="width:5%; color:#e2007a; font-size:300%; padding:10px"| <center>'''→'''</center> | style="width:16%;border:2px solid #e2007a;border-radius: 4px;padding:8px; font-size:100%; background:#e2007a; color:white"|<center>'''Implemente'''</center> Decida estrategias a implementar para contribuir al desarrollo de la competencia matemática. |} {| style="border:2px solid #e2007a;border-radius: 4px;padding:8px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="50%" | <span style="color: #e2007a;">'''Resultados''' El porcentaje de respuestas correctas en '''geometría''' fue de '''21%.''' Esto quiere decir que si la prueba incluía 5 ítems que evaluaban este contenido, los estudiantes resolvieron correctamente 1.*</span> [[Archivo:2 GEOMETRIA-2-figura2a.png |250px]] <span style="color: #e2007a;">*El número de ítems varía en las distintas formas de la prueba.</span> |} == <span style="color: #e2007a;">Gometría</span> == Los conocimientos geométricos favorecen el desarrollo de habilidades de visualización, pensamiento crítico, intuición, perspectiva, razonamiento deductivo, razonamiento espacial y argumentación lógica (Jones, 2002). Y en específico, la enseñanza de figuras planas beneficia la capacidad de los estudiantes para resolver problemas prácticos (Morales y dos Santos, 2012). Entre otros contenidos de geometría, se evalúa el cálculo del perímetro de figuras planas. El perímetro de una figura plana es la suma de las longitudes de sus lados. [[Archivo:2 GEOMETRIA-2-figura1.png |600px]] == <span style="color: #e2007a;">Análisis del ítem</span> == Resolver correctamente este ítem evidencia que el estudiante es capaz de identificar propiedades de figuras geométricas planas, entiende el concepto de perímetro, reconoce elementos relevantes en gráficos que le ayudan a entender el problema y puede analizar e incorporar aplicaciones de conocimiento geométrico. {| style="border:2px solid #e2007a;border-radius: 4px;padding:8px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="35%" | La figura muestra un rectángulo que tiene una sección sombreada. [[Archivo:2 GEOMETRIA-2-figura2.png |400px]] ¿Cuál es el perímetro de la sección sombreada? a. 515cm <u>'''b. 91cm'''</u> c. 45.5cm d. 115cm |} {| style="background:LavenderBlush" border="1" cellpadding="5" cellspacing="0" align="center" |+ align="center" style="background:#e2007a; color:white"|<big>'''Descripción del ítem'''</big> | colspan=2|'''Competencia básica 3:''' Pensamiento lógico-matemático |- |'''Dimensión clave'''||Representación cuantitativa y espacial de la realidad. |- |'''Componente'''||Formas, patrones y relaciones: establecer propiedades y relaciones entre distintos elementos geométricos. |- |'''Indicador de logro'''||Aplica teoremas y conocimientos de geometría plana para interpretar información. |- |'''Contenido evaluado'''||Perímetro |- |'''Demanda cognitiva'''||Utilización |- |style="background:Grey; color:white"|'''Respuesta correcta'''||style="background:Grey; color:white"|<u>Opción b</u> |} == <span style="color: #e2007a;">Análisis del error</span> == {| style="background-color:#ececed; float:left" width="20%" |El ítem requiere que el estudiante identifique el perímetro de un rectángulo. Utilizando las medidas indicadas, debe encontrar cuánto mide la base del rectángulo sombreado y calcular a partir de ello el perímetro solicitado. [[Archivo:2 GEOMETRIA-3 figura1.png|400px]] Los estudiantes no fueron capaces de identificar las medidas de base y altura para calcular el perímetro del rectángulo, no reconocieron la medida que debían restar a la base del rectángulo para calcular la base del área sombreada. |} Si seleccionaron la opción '''a''', los estudiantes identificaron la base de la sección sombreada pero calcularon el área del rectángulo (24.5cm * 21cm = 515cm2) en lugar del perímetro y al considerar la respuesta, no tomaron en cuenta las unidades de medida. Los estudiantes que definieron el perímetro como la opción '''c''', no reconocen el perímetro como la suma de la longitud de todos los lados de la figura y únicamente sumaron la base del área sombreada con su altura (24.5cm + 21cm = 45.5cm). Quienes eligieron la opción '''d''' dominan el concepto del perímetro; sin embargo, no fueron capaces de interpretar el problema planteado en la figura y calcularon el perímetro del rectángulo exterior (2(36.5cm + 21cm) = 115cm) y no el perímetro del rectángulo interior. [[Archivo:2 GEOMETRIA-2-figura3.png|400px]] b = 36.5cm – 12cm = 24.5cm h = 21cm P = b + h + b + h P = 2b + 2h P = 2 (b + h) P = 2 (24.5cm + 21cm) P = 91cm == <span style="color: #e2007a;">Sugerencias de estrategias de enseñanza-aprendizaje</span> == 1. Transformar períodos de clase en tiempos de aulataller, espacios en los que los estudiantes a través de actividades definidas, puedan deducir contenidos de geometría. Para ello se necesita: a) diseñar una situación problemática que requiera visualizar, explorar, analizar, abstraer propiedades, clasificar, elaborar y validar conjeturas acerca de figuras y sus relaciones; b) elegir un material concreto que facilite el aprendizaje; c) facilitar las indicaciones sin ofrecer rutas de resolución inmediatas; d) dirigir la puesta en común de procedimientos y resultados; e) cerrar la actividad formalizando los contenidos geométricos trabajados. {| style="background:#e2007a;border:1px solid #e2007a;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="55%" | <span style="color: #ffffff;"> El razonamiento geométrico puede alcanzarse a través de tareas de conceptualización, investigación y demostración. Estos tres tipos de tareas dentro del enfoque de resolución de problemas, permiten que los estudiantes construyan conocimiento geométrico al resolver situaciones problemáticas (INEE, 2008). |} 2. Utilizar elementos del contexto para que los alumnos den sentido al concepto de perímetro. Pueden buscar objetos que tengan silueta de polígonos, medir la longitud de sus lados, calcular el perímetro y dibujar una figura representativa. Por ejemplo pueden medir el campo de futbol (paralelogramo), el tablero del pupitre (cuadrilátero), una fuente con base hexagonal, el patio de la casa, una sección del jardín… Además del cálculo, debe estimularse la generación de ideas sobre las posibles utilidades de conocer el perímetro de los objetos elegidos, de manera que los estudiantes puedan darle significado al aprendizaje y transferir el conocimiento geométrico más allá del salón de clase. 3. Elaborar un Tangram que consiste en un rompecabezas de origen chino que consta de siete formas básicas obtenidas por la división de un cuadrado y resulta útil como material concreto para aprender distintos teoremas geométricos de figuras planas. Puede hacerse fácilmente utilizando una cartulina (revisar Arenas, 2012). Utilizando todas las piezas, sin colocar una pieza sobre otra, los estudiantes construyen distintas figuras y responden: ¿cuál es el perímetro de las figuras?, ¿cuál es la de mayor perímetro?, ¿cuál es la de menor? Se puede alternar entre medidas directas y cálculos a partir del conocimiento previo de la longitud de los lados de determinadas figuras. [[Archivo:2 GEOMETRIA-2-figura4.png|400px]] == <span style="color: #e2007a;">Referencias</span> == <references /> * Arenas, M. (2012). ''Propuesta didáctica para la enseñanza de áreas y perímetros en figuras planas''. Obtenido desde http://www.bdigital.unal.edu.co/9300/1/5654114.2012.pdf * DIGECADE –Dirección General de Gestión de Calidad Educativa–. (2010). [[Tabla de contenidos del CNB - Bachillerato en Ciencias y Letras|''Curriculum Nacional Base: Bachillerato en Ciencias y Letras'']]. Guatemala: Ministerio de Educación. * DIGECUR – Dirección General de Currículo–. (2013a). [[Tabla de Contenidos del CNB - Bachillerato en Ciencias y Letras con Orientación en Educación de Productividad y Desarrollo|''Curriculum Nacional Base: Bachillerato en Ciencias y Letras con orientación en Educación de Productividad y Desarrollo'']]. Guatemala: Ministerio de Educación. * DIGECUR – Dirección General de Currículo–. (2013b). [[Tabla de Contenidos del CNB - Bachillerato en Ciencias y Letras con Orientación en Finanzas y Administración|''Curriculum Nacional Base: Bachillerato en Ciencias y Letras con orientación en Finanzas y Administración'']]. Guatemala: Ministerio de Educación. * INEE – Instituto Nacional para la Evaluación de la Educación. ''La enseñanza de la geometría''. México * Jones, K. (2002). "Issues in the Teaching and Learning of Geometry". En: Linda Haggarty (Ed.), ''Aspects of Teaching Secondary Mathematics: Perspectives on Practice'' (121-139). London: RoutledgeFalmer. * Morales, M. y dos Santos, D. (2012). "El análisis del contexto de área de figuras planas en los libros didácticos recomendados por el PNLEM". ''Actas del 3<sup>er.</sup> Congreso Uruguayo de Educación Matemática''. Obtenido desde http://www.semur.edu.uy/curem3/actas/127.pdf * USAID –United States Agency for International Development–. (2009). ''Competencias básicas para la vida''. Guatemala.
Resumen:
Ten en cuenta que todas las contribuciones a CNB se consideran publicadas bajo la Creative Commons BY-SA 4.0 (véase
CNB:Derechos de autor
para más información). Si no deseas que las modifiquen sin limitaciones y las distribuyan libremente, no las publiques aquí.
Al mismo tiempo, asumimos que eres el autor de lo que escribiste, o lo copiaste de una fuente en el dominio público o con licencia libre.
¡No uses textos con copyright sin permiso!
Cancelar
Ayuda de edición
(se abre en una ventana nueva)
Menú de navegación
Herramientas personales
No has accedido
Discusión
Contribuciones
Crear una cuenta
Acceder
Espacios de nombres
Página
Discusión
español
Vistas
Leer
Editar
Editar código
Ver historial
Más
Purgar
Buscar
Navegación
Página principal
Retorno seguro a clases
Protocolo de regreso para docentes
Protocolo de regreso para directores
Protocolo de apoyo emocional y resiliencia
Recomendaciones para transporte
Toda la categoría
Aprendizaje en línea
Guía docente para el aprendizaje remoto
Ayudar a aprender en línea
Aprendo en casa - Mineduc
Lineamientos de seminario y prácticas
Todos los recursos educativos alineados al CNB
Toda la categoría
Programa de certificación
Instrucciones del programa
Páginas con pruebas de certificación
Inicial y Preprimaria
Inicial
Preprimaria (nuevo)
Primaria y Básico
Primaria
Primaria Acelerada
Básico
Básico por Madurez
Bachillerato
Bach en CC y LL
Ciencias Biológicas
Computación
Diseño Gráfico
Educación
Productividad y Desarrollo
Educación Física
Educación Musical
Electricidad
Finanzas y Administración
Gestión de Oficinas
Mecánica Automotriz
Productividad y Emprendimiento
Textiles
Turismo
Por Madurez
Magisterio
Educación Bilingüe
Perito
Electricidad Industrial
Electrónica y Dispositivos Digitales
Industria de Alimentos
Desarrollo Comunitario
Pensum Perito Contador Diurna
Pensum Perito Contador Nocturna
Pensum Perito Contador Computación Diurna
Pensum Perito Contador Computación Fin de Semana
Pensum Perito Contador Bilingüe Matutina
Todos los Pensa Perito Contador
Mallas curriculares Inicial, Preprimaria, Primaria y Básico
Inicial
Preprimaria (nuevo)
Primaria
Primaria Acelerada
Básico
Mallas curriculares Bachillerato y Magisterio EBI
Bach en CC y LL
Ciencias Biológicas
Computación
Diseño Gráfico
Educación
Productividad y Desarrollo
Educación Física
Educación Musical
Electricidad
Finanzas y Administración
Gestión de Oficinas
Mecánica Automotriz
Productividad y Emprendimiento
Textiles
Turismo
Por Madurez
EBI Infantil
Concreción por pueblos
Navegador
Pueblo Maya
Pueblo Garífuna
Pueblo Xinka
Módulos CNB
Introducción al CNB en línea
Fundamentos
Planificación
Metodología
Evaluación
Sobre el Currículo
Currículo en la agenda 2030
Toda la categoría
ODEC
ODEC Inicial
ODEC Preprimaria
ODEC Primaria
Educación Musical
Aprender a pensar
Técnicas didácticas
Pensamiento crítico
Cómo aprendemos
Falacias lógicas
Recursos de Lectoescritura
Enseñanza de la comprensión lectora
Colección CILEES
Antología de cuentos
Cuentos en familia
Tesoro de la lectura
Aprendizaje de la Lectoescritura
• Prácticas
• Actividades
Guía docente para comprensión lectora
Cuadernillos pedagógicos
Organizadores de Lectura
Evaluación Basada en Currículo
Lectoescritura funcional
Involucramiento de padres de familia en lectoescritura
Potenciando la Lectura - guía docente
Recursos de Educación Bilingüe Intercultural
Planificación por pueblos
Antología de cuentos
Nuestro idioma en la escuela
Kemon Ch'abäl
Buenas prácticas EBI
Guía para material con pertinencia EBI
Protocolo acompañamiento EBI
Evaluación de la lectura
Manual de Educación Intercultural
Manual de orientación para voluntarios
Creando sinergia - Xinka
Recursos STEAM
Experimento 10+
Otros Recursos Educativos
Calendario Escolar
Serie Prácticas Educativas
Buenas Prácticas EBI
Elaboración de Materiales
Publicaciones
Vídeos
Herramientas
Recursos por Nivel y Grado
Recursos de Evaluación
Guías prueba de docentes
Breves para Docentes
Cuadernillos Pedagógicos - Matemáticas
Cuadernillos Pedagógicos - Comprensión lectora
Aprender del Error - Básico
Aprender del Error - Graduandos
Evaluación en el Aula
Evaluación del desempeño basada en competencias
Repasos de lectura del CNB
Evaluación Basada en Currículo
Juventud y Género
Desarrollo del pensamiento crítico
Abriendo Oportunidades
Educar para la igualdad
Seminario
Competencias básicas para la vida
Gobierno escolar Primaria
Gobierno escolar Secundaria
Lectoescritura funcional
Necesidades Educativas Especiales
Material NEE docentes regulares
Adecuaciones para NEE
Leyes para educación especial
Bibliotecas y Recursos
Bibliotecas comunitarias
Estimulación temprana a la lectura
Qué y para qué de la biblioteca
Nuestros juguetes, juegos, rondas y cantos infantiles
Liderazgo Pedagógico
Protocolo de regreso para directores
Prevención de la violencia
Guías Prevenir es mejor
Evidencias de aplicación del CNB
Manual PEI
Manual de coaching
Involucramiento de padres de familia en lectoescritura
Promover éxito en todos los niveles
Toda la categoría
Salud escolar
Covid-19
Sarampión
Ayuda y otros
Contactar al editor
Contactar otro usuario
Preguntas frecuentes
Ayuda
Cambios recientes
Alinear recurso educativo
Página aleatoria
Glosario
CNB para descarga
Lista de correo
Herramientas
Lo que enlaza aquí
Cambios relacionados
Páginas especiales
Información de la página
Datos de carga