Diferencia entre revisiones de «Serie Aprender del Error/9»
imported>Digeduca-Mineduc Página creada con «<span style="font-size:200%;;color: #ff0088">Álgebra: ecuaciones</span> <div style="float:right">__TOC__</div> 900px == <span style="...» |
imported>Digeduca-Mineduc Sin resumen de edición |
||
Línea 40: | Línea 40: | ||
<center>[[Archivo:FIG1_ÁLGEBRA_ECUACIONES.png |350px]]</center> | <center>[[Archivo:FIG1_ÁLGEBRA_ECUACIONES.png |350px]]</center> | ||
La demanda cognitiva de este ítem, ubicada en Análisis, requiere del estudiante '''recordar los procedimientos para encontrar la incógnita en una ecuación y aplicar los cálculos correspondientes.''' | La demanda cognitiva de este ítem, ubicada en Análisis, requiere del estudiante '''recordar los procedimientos para encontrar la incógnita en una ecuación y aplicar los cálculos correspondientes.''' | ||
== <span style="color: #ff0088;">Análisis del error</span> == | |||
{| style="background:#ff0088;border:1px solid #ff0088;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="55%" | {| style="background:#ff0088;border:1px solid #ff0088;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="55%" | ||
| | | | ||
Línea 53: | Línea 54: | ||
|} | |} | ||
|} | |} | ||
<center>[[Archivo:FIG3 ÁLGEBRA ECUACIONES.png |500px]]</center> | |||
Los posibles errores cometidos por los estudiantes son los siguientes: | |||
Si el estudiante eligió la opción… | |||
:'''a.''' comprende que debe sustituir 68.5 en x, y realiza la operación 86.5 + 68.5 =155, pero no aplica correctamente la ley de inversos aditivos, luego efectúa la operación 155/ 0.004 = 38 750. | |||
:'''b.''' no aplica correctamente la jerarquía de operaciones al realizar la operación 86.5 – 0.004 = 86.496 y expresa la ecuación x = 86.496t pero esta igualdad no es equivalente a la ecuación original. Despeja t empleando la ley del inverso multiplicativo y obtiene el cociente indicado 6.496/68.5 como solución. | |||
:'''c.''' sustituye 68.5 en x y aplica la propiedad de los inversos aditivos expresando la ecuación equivalente: - 18 = - 0.004t, pero opera incorrectamente el cociente –18/-0.004 resolviendo (18x4)∙(100) y obtiene como resultado 7200. |
Revisión del 17:07 2 jul 2014
Álgebra: ecuaciones
Archivo:ÁLGEBRA ECUACIONES.png
Presentación
La Dirección General de Evaluación e Investigación Educativa, del Ministerio de Educación, encargada de velar y ejecutar los procesos de evaluación e investigación, para asegurar la calidad educativa, pone en sus manos esta publicación, que espera sea de utilidad a los docentes del área curricular de Matemáticas, del Nivel de Educación Media, del Ciclo de Educación Básica, como un instrumento para reflexionar en torno a los resultados de las evaluaciones aplicadas en el año 2009
|
¿Cómo usar este documento?
Para conseguir el objetivo de aprender del error, el presente documento se ha estructurado en tres apartados que se espera sean útiles para mejorar el proceso de aprendizaje de los estudiantes del Nivel de Educación Media, del Ciclo de Educación Básica. En primer lugar se ofrece una cápsula informativa, acerca de la teoría que sustenta el aprendizaje de las ecuaciones. A continuación, se presenta un ítem clonado de la prueba de matemáticas que resuelven los estudiantes de tercero básico en las evaluaciones nacionales que aplica la DIGEDUCA, con la finalidad de que el docente ubique el contenido dentro de lo que establece el Curriculum Nacional Base –CNB–, la destreza que apoya el desarrollo de la competencia matemática y el porcentaje de ítems que fueron resueltos correctamente a nivel nacional. En el apartado Análisis del error, se explican las posibles causas que llevaron a los estudiantes a seleccionar una opción incorrecta. Aquí radica la razón del título de esta publicación, se espera que los docentes utilicen este análisis para identificar las posibles deficiencias y promover estrategias para fortalecer los aprendizajes. Como complemento del análisis del error, se brindan algunas sugerencias para mejorar los aprendizajes, que desde luego no quedan agotadas en este bifoliar. Finalmente se refiere una lista de referencias bibliográficas que pueden ser consultadas para completar la información aquí incluida. La DIGEDUCA espera con esta publicación, hacer un aporte que favorezca la calidad educativa de la enseñanza en nuestro país.
Álgebra: ecuaciones
Para definir una ecuación es necesario iniciar estableciendo qué es una igualdad; esta es una expresión comparada con otra a través de un signo igual (=). Una ecuación es una igualdad entre dos expresiones que cumple con el requisito indispensable de ser verdadera. Las ecuaciones suelen utilizarse en el álgebra para encontrar un valor desconocido llamada incógnita. Considere la ecuación lineal 5 + x = 6 + 1, aparece un valor desconocido la variable “x”, este valor tiene que ser 2 para que la igualdad sea verdadera. Por lo que la solución de la ecuación lineal es x = 2. La ecuación lineal 3x + 3 = 2x + 8 se resuelve elaborando una lista de ecuaciones equivalentes cada una de las mismas más simple que la precedente, los pasos para resolver la ecuación anterior se puede visualizar a continuación:
Análisis del ítem
Al incluir ítems de ecuaciones se espera que el estudiante evidencie que aplica los cálculos necesarios para resolverlas.
|
La demanda cognitiva de este ítem, ubicada en Análisis, requiere del estudiante recordar los procedimientos para encontrar la incógnita en una ecuación y aplicar los cálculos correspondientes.
Análisis del error
|
Los posibles errores cometidos por los estudiantes son los siguientes:
Si el estudiante eligió la opción…
- a. comprende que debe sustituir 68.5 en x, y realiza la operación 86.5 + 68.5 =155, pero no aplica correctamente la ley de inversos aditivos, luego efectúa la operación 155/ 0.004 = 38 750.
- b. no aplica correctamente la jerarquía de operaciones al realizar la operación 86.5 – 0.004 = 86.496 y expresa la ecuación x = 86.496t pero esta igualdad no es equivalente a la ecuación original. Despeja t empleando la ley del inverso multiplicativo y obtiene el cociente indicado 6.496/68.5 como solución.
- c. sustituye 68.5 en x y aplica la propiedad de los inversos aditivos expresando la ecuación equivalente: - 18 = - 0.004t, pero opera incorrectamente el cociente –18/-0.004 resolviendo (18x4)∙(100) y obtiene como resultado 7200.