Primer Grado - Matemáticas
Ir a la Tabla de Competencias
Competencia 1: Establece relaciones entre personas, objetos y figuras geométricas por su posición en el espacio y por la distancia que hay entre ellos[editar | editar código]
Ir a la Tabla de Competencias para el Bloque 1
Contenidos de aprendizaje[editar | editar código]
Procedimentales | Declarativos | Actitudinales |
---|---|---|
|
|
|
Actividades sugeridas para el desarrollo de la competencia número 1[editar | editar código]
Actividad 1: Hagamos figuras geométricas[editar | editar código]
En el patio de la escuela, las y los estudiantes se organizan para formar dos círculos, uno adentro del otro, quienes forman los círculos deben quedar frente a frente, y empiezan a conocerse y a decirle al otro u otra su nombre, su edad, donde vive, nombre de sus papás y mamás, etc. Luego, el círculo de adentro circula para que otras parejas se vayan formando para seguir presentándose hasta conocerse todos y todas. A una señal, los alumnos y las alumnas que están formando el círculo de afuera formarán un cuadrado, lo más grande posible, las personas de adentro pueden seguir en círculo, luego, pueden formar un triángulo. Asimismo, los dos grupos pueden formar alguna figura que se les ocurra, por ejemplo, una casa.
Ahora, todos los niños y niñas forman un solo círculo y juegan la dinámica “Hagan lo que digo, pero no hagan lo que hago”. Por ejemplo, el maestro o la maestra dice: que se toquen la cabeza con la mano derecha, pero él o ella se toca el brazo izquierdo. Se pregunta si es correcto lo que hizo el maestro o la maestra y darán su opinión, se continua de esta forma tocándose la mayor parte del cuerpo, enfatizando los lados derecho e izquierdo y se pregunta siempre si se hizo o no lo correcto.
Esta actividad se desarrolla en función de la ubicación del niño o la niña, en el cual el maestro o la maestra realizará las siguientes preguntas: ¿Qué figuras geométricas observan a su lado derecho? Aquí los niños y las niñas observarán su entorno y expresarán el nombre de las posibles figuras geométricas que hay adentro del aula y afuera de ella. Luego, se les dará la oportunidad a otros niños y niñas para que realicen otras preguntas relacionadas al tema.
Le sugerimos que verifique la noción de esquema corporal del niño y la niña, para lo que debe asegurarse de que pueden reconocer y nombrar las principales partes del cuerpo humano o figura humana e identificar y nombrar las posiciones del cuerpo tanto sentados o sentadas como acostados o acostadas, además deben poder identificar y nombrar las funciones que cumple cada parte del cuerpo humano.
Actividad 2: Puntos de referencia[editar | editar código]
Todos y todas las estudiantes participan en la siguiente actividad de ubicarse y ubicar objetos en relación con un punto de referencia.
Se inicia la actividad solicitando a uno o dos estudiantes que coloquen una bola de papel arriba de la mesa, debajo, al lado, cerca , lejos a la izquierda, a la derecha de la mesa, etc. También deben colocar la bola de papel a diferentes direcciones y con las mismas distancias.
Le sugerimos que verifique si niños y niñas discriminan los conceptos de: igual, grande, pequeño, largo, corto, cerca, lejos, arriba–abajo, derecha– izquierda, lleno-vacío, ancho- angosto; identificando similitudes cualitativas (uno es más grande que otro, uno es más bajo que otro, etc.).
Actividad 3: Mi bolsa matemática[editar | editar código]
Desarrolle la herramienta “Mi bolsa matemática”, en la cual se procede a proporcionar a cada grupo de trabajo (5 niños y/o niñas por grupo) una bolsa no transparente en cuyo interior se colocarán figuras geométricas para que cada integrante del grupo meta la mano en la bolsa y tome una figura, identificando la figura que tomó.
Este juego se realizará tomando en cuenta las orientaciones completas que se dieron anteriormente: proporcionar hojas de papel periódico a cada niño o niña para que identifique las figuras geométricas que posiblemente se encuentren en ella; posteriormente, pedirle que las recorte y las pegue en su cuaderno de trabajo o en un pliego de papel bond; formar una figura (payasitos, carros, barcos, etc) con las figuras geométricas de que dispone; y elaborar barriletes con diferentes figuras geométricas.
Para llevar a cabo la actividad necesitaremos periódicos, cartón, crayones, acuarelas, tijeras, pegamento, cuadernos y bolsas que no sean transparentes o cajas.
Le sugerimos que evalúe si el niño o la niña elabora figuras geométricas utilizando diferentes materiales: lápiz, crayones, cáñamo, pita, palillos, barro, papel periódico, entre otros posibles; y que verifique si utiliza correctamente la bolsa matemática para la identificación de figuras geométricas (rectángulo, cuadrado, triángulo, círculo, entre otros).
Actividad 4: Nuestra referencia, el Sol[editar | editar código]
Lleve a los niños y las niñas al patio de la escuela, organice grupos mixtos de 5 personas, para luego realizar una lluvia de ideas con las preguntas sugeridas: ¿Por dónde sale el sol? ¿El Sol sale por la mañana o por la tarde? ¿En que dirección se oculta? ¿Se oculta en la mañana o por la tarde? ¿Qué forma y color tiene el Sol? ¿Qué dirección sigue el Sol?
Realice otras preguntas relacionadas con el viento y con los fenómenos de la naturaleza. Pida a los niños y las niñas que en cada grupo formen la figura del sol. Solicite que levanten la mano derecha en dirección a la salida del sol, la mano izquierda por donde se oculta el sol. El maestro o la maestra explicará que por donde sale el sol es el oriente, por donde se oculta el sol es el occidente, lo que tienen al frente es el norte y lo que tiene en la espalda es el sur.
Luego de la ubicación de los niños y niñas, ésta se ejercita varias veces, pidiendo que en sus grupos den una o varias vueltas y cuando se detienen, se les pedirá que ubiquen y señalen los 4 puntos cardinales. Los niños y las niñas relacionan los cuatro puntos cardinales con los cuatro colores de la cosmovisión maya (negro, rojo, amarillo y blanco).
Le sugerimos que verifique el nivel de desarrollo de la noción del niño y de la niña en relación al eje espacio-temporal. Vea si niños y niñas identifican y verbalizan acciones de ayer, hoy y mañana y son capaces de establecer secuencias temporales cortas, como por ejemplo: después de comer (qué hago) me cepillo los dientes.
Actividad 5: Dibujando con cuidado[editar | editar código]
Pida a niños y niñas que punteen libremente superficies sin límites, el interior de figuras de forma simple (círculo, cuadrado. etc.), el interior de figuras de forma compleja (una figura de forma irregular, una fruta, etc.). Pida al grupo que dibuje pequeños trazos y marcas en superficies sin límite, en el interior de formas simples respetando el contorno, en el interior de formas complejas respetando el contorno.
Forme grupos mixtos de 5 estudiantes, proporcióneles un pliego de papel bond para que dibujen su escuela, y que cada quien exprese lo que más le gusta de ella.
Pídales que dibujen con crayones en su cuaderno frutas de su preferencia, que dibujen flores con diferentes formas, recortándolas después para construir un florero y que dibujen el sol y la luna.
Le sugerimos que verifique que niñas y niños ejercitan el trazo de líneas entre dos o más puntos elaborando para ello una hoja con puntos simulando la geotablilla, en donde unirán dos o más puntos con líneas rectas. También puede animar a las niñas y los niños a que jueguen al totito, en parejas, siguiendo las reglas que dicen que quien alinea sus tres piezas en forma horizontal, vertical o inclinada, gana el juego.
Actividad 6: Vamos a cantar[editar | editar código]
Todos los niños y niñas participan en el canto infantil “Haz igual que yo”:
Haz igual que yo
Mira cuando las cosas caminan mal
Haz igual que yo
Camina hacia delante y volverá la paz
Arriba siempre arriba, adelante siempre adelante
Sin mirar atrás
CORO
Arriba los brazos hagamos un círculo
Movamos los pies hacia la derecha
Hacia la izquierda
Cerca muy cerca tenemos la paz
También le proponemos un canto como el que escribimos a continuación, “El Señor de la Paz”:
El Señor de la paz, paz, paz, paz
Se va para atrás, tras, tras, tras
Se va para adelante, delante, delante, delante
Se va para abajo, abajo, abajo, abajo,
Se va para arriba, arriba, arriba, arriba
Se va para la derecha, derecha, derecha, derecha
Se va para la izquierda, izquierda, izquierda.
Le sugerimos que invente otros cantos con el vocabulario de las actividades que hemos venido haciendo hasta ahora, cuya puesta en práctica, junto con movimientos y gestos, ayudará al logro de la competencia de una forma esencialmente lúdica. También puede investigar otros cantos relacionados con el vocabulario, utilizado en esta actividad.
Evaluación[editar | editar código]
Tras haber trabajado los contenidos propuestos para el logro de la competencia a través de las actividades sugeridas y aquellas diseñadas por usted, deberá llevar a cabo la evaluación, para comprobar si niñas y niños lograron alcanzar la competencia. Recordemos que la competencia número 1 dice:“Establece relaciones entre personas, objetos y figuras geométricas por su posición en el espacio y por la distancia que hay entre ellos”, a continuación le hacemos una propuesta de indicadores de logro que le permitirán evaluar la competencia:
- Indicadores de logro
- Expresa su ubicación con respecto a un compañero (a), según los términos: adelante, atrás, derecha, izquierda.
- Identifica figuras geométricas en su entorno: cuadrado, círculo, rectángulo, triángulo.
- Elabora figuras geométricas utilizando diferentes materiales, como lápices, crayones, cáñamo, pita, palillos y otros.
- Dibuja patrones observados en: objetos concretos de la naturaleza, construidos por sus compañeros o compañeras o por la comunidad
- Determina la posición de objetos de la clase con relación a otros objetos.
- Identifica los lugares de su escuela, dirección, baños, aulas, patio de recreo, bibliotecas y otros.
- Señala los puntos cardinales tomando como referencia su propio cuerpo.
- Relaciona los puntos cardinales tomando como referencia la salida y la puesta del sol.
- Traza diferentes tipos de líneas: rectas, oblicuas, interrumpidas, punteadas utilizando diferentes tecnologías.
- Sigue la trayectoria de líneas rectas.
- Utiliza espontáneamente el vocabulario básico.
Competencia 2: Expresa ideas de patrones y relaciones matemáticas que se dan en las manifestaciones culturales en su entorno familiar[editar | editar código]
Ir a la Tabla de Competencias para el Bloque 1
Contenidos de aprendizaje[editar | editar código]
Procedimentales | Declarativos | Actitudinales |
---|---|---|
|
|
|
Actividades sugeridas para el desarrollo de la competencia número 2[editar | editar código]
Actividad 1: Demos palmadas[editar | editar código]
Las y los niños forman un círculo cada uno seguirá una secuencia de sonido de acuerdo a un orden que se establecerá de la siguiente manera: Un niño o niña inicia dando una palmada y el o la siguiente da dos palmadas, quien sigue da una palmada, quien sigue da dos palmadas, y así sucesivamente, hasta que todos los niños y las niñas participan.
Otra variable: en lugar de dar palmadas, se sustituye por: “Pin” y “Pon”. Otra variable sería: todo el alumnado de pié, luego alguien se coloca en cuclillas, quien sigue no, quien sigue si, quien sigue no, y así sucesivamente. Otra variable es asignar a los niños y a las niñas un número del uno al tres, y luego repite el número que le tocó.
Le sugerimos que verifique el nivel de desarrollo de la noción de patrón, pidiendo a niñas y niños que realicen lo siguiente con objetos concretos o en su cuaderno: reconocer un patrón de dos elementos y completar un patrón de dos elementos, así como crear un patrón de tres y cuatro elementos.
Evaluación[editar | editar código]
Luego de trabajar los contenidos propuestos para el logro de la competencia a través de las actividades sugeridas y aquellas diseñadas por usted, deberá llevar a cabo la evaluación, para comprobar si niñas y niños lograron alcanzar la competencia. Recordemos que la competencia número 2 dice:“Expresa ideas de patrones y relaciones matemáticas que se dan en las manifestaciones culturales en su entorno familiar.”, a continuación le hacemos una propuesta de indicadores de logro que le permitirán evaluar la competencia:
- Indicadores de logro
- Identifica patrones en la naturaleza y en objetos que fabrican las personas.
- Describe patrones observados en actividades artísticas: danza, música, teatro en las diferentes fiestas de la comunidad.
- Elabora patrones utilizando figuras geométricas.
- Elabora trabajos que reproduzcan los patrones observados en diferentes manifestaciones culturales.
Competencia 3: Expresa ideas y pensamientos con libertad y coherencia utilizando diferentes signos, símbolos gráficos, algoritmos y términos matemáticos[editar | editar código]
Contenidos de aprendizaje[editar | editar código]
Procedimentales | Declarativos | Actitudinales |
---|---|---|
|
|
|
Actividades sugeridas para el desarrollo de la competencia número 3[editar | editar código]
Actividad 1: Los conjuntos[editar | editar código]
El maestro o maestra lee o narra al alumnado el siguiente fragmento del Popol Vuh:
“Esta es la relación de cómo todo estaba en suspenso, todo en calma, en silencio; todo inmóvil, callado,
y vacía la extensión del cielo.
Esta es la primera relación, el primer discurso.
No había todavía un hombre, ni un animal, pájaros, Peces, cangrejos, árboles, piedras, cuevas, barrancas, Hierbas ni bosques: sólo el cielo existía.”
Popol Vuh, capítulo uno
El o la docente comenta el fragmento con el alumnado, explica qué es el Popol Vuh y su importancia. Vuelve a darle lectura al fragmento y los niños y las niñas hacen una señal (levantar la mano derecha) cada vez que escuchan una palabra que se refiere a conjuntos.
Le sugerimos que use material concreto para el aprendizaje de conjuntos, partiendo de la experiencia propia de los niños y las niñas en relación a conjuntos, por ejemplo: conjunto de juguetes que tenga, utensilios de cocina, entre otros. Puede hacerse la conexión de actividades, desarrollando la actividad de identificación de conjunto de letras de palabras escritas con esta actividad de matemática.
Actividad 2: Jugando con los conjuntos[editar | editar código]
El o la docente solicita al alumnado que formen grupos mixtos de 5 integrantes, los cuales saldrán a recolectar diferentes cantidades de objetos tales como: hojas, piedrecillas, palitos, lápices, semillas de diferentes frutas, tapones de distintos colores, tapitas, los cuales meterán a una bolsa.
De regreso en la clase el alumnado sacará de la bolsa los objetos recolectados y los agruparán según sus atributos ejemplo: color, tamaño, dureza, utilidad, forma.
Los niños y las niñas forman conjuntos con material concreto e identifican qué conjunto es mayor, qué conjunto es menor, qué conjuntos son iguales de acuerdo a la cantidad de elementos en cada uno de los conjuntos.
Formarán dos o más conjuntos que tengan el mismo número de elementos. Seleccionan dos o mas conjuntos con el mismo número de elementos y parean elementos de un conjunto con elementos de otro conjunto para establecer la relación uno a uno.
Determinan qué conjuntos son equivalentes (es decir, conjuntos que tienen la misma cantidad de elementos aunque no tengan los mismos atributos).
Utilizando una pita, las y los niños forman círculos en donde ubicarán objetos que tengan los mismos atributos.
Las niñas y los niños organizados siempre en grupos mixtos, anotan numerales de 0 a 9 en papelitos pequeños que les servirá para indicar la cantidad de elementos que tienen los conjuntos formados o conjuntos a formarse.
Le sugerimos que en el desarrollo del tema de conjuntos, enfatice que un conjunto es una agrupación de objetos de la misma clase, es decir, de objetos que tienen, al menos una característica en común. Es importante que los niños y las niñas formen conjuntos y subconjuntos de objetos de la misma clase. Ejemplo: conjunto de semillas, subconjunto: semilla de fríjol, subconjunto: semilla de maíz.
Actividad 3: El perro, el conejo y las cuevas[editar | editar código]
Las y los niños participan en el juego llamado “El perro, el conejo y las cuevas”. Se organizan en grupos de tres. Los grupos se llamarán “cuevas” y en cada cueva debe haber una misma cantidad de conejos (2, 4, dependiendo del número de niños y niñas en la clase).
Un niño o niña debe estar afuera de las cuevas (es decir, está sin cueva) y otro niño o una niña hará el papel de perro que corre al conejo para atraparlo. Este niño o niña huirá del perro y se podrá meter en cualquier cueva para salvarse. Pero la cueva donde se mete el conejo ya no da cabida a otro más, por lo tanto, uno de los conejos encuevados tiene que salir en el momento que ingrese el conejo que viene huyendo.
El perro seguirá al nuevo conejo de la misma manera. En caso de que el conejo fuese atrapado, se invertirán los roles. (el perro se convierte en conejo y el conejo se convierte en perro).
Le sugerimos que realice actividades de clasificación con diferentes objetos para crear un ambiente apropiado para desarrollar el tema de conjuntos. Igualmente, las y los estudiantes deben ejercitar con mayor profundidad la formación de conjuntos y las relaciones entre los elementos, como por ejemplo la relación de pertenencia y no pertenencia. Es importante el uso de material concreto para llegar finalmente a la abstracción de conceptos matemáticos.
Actividad 4: Un paseo por el bosque[editar | editar código]
Cada uno de los niños y cada una de las niñas cierra los ojos y se imagina que participa en un paseo a un bosque y describe lo que observa. Luego el maestro o la maestra orienta el paseo de la siguiente manera:
Vamos a salir de paseo, ¿Estamos listos? Empezamos a caminar (palmadas en el escritorio simulando los pasos). Estamos viendo un... (los niños y las niñas completan), ahora vemos dos... (el alumnado completa), ahora vemos tres... (ellas y ellos completan).
Corramos un poco (palmadas en el escritorio). Ahora, ¿Qué encontramos? Un río, ¿Cómo lo pasamos?... (completan).
Seguimos caminando (palmadas en el escritorio), ¿Qué encontramos?... (niñas y niños completan), ¿Qué forma tiene? Dibujemos con los dedos su forma en el aire. A ver quién es quien observa más objetos... ¿Cómo son estos objetos?
¿Qué animales vemos que están en su nido? ¿Hay algún animal que no está en su nido? ¿Qué animales vemos más? ¿Qué animales vemos menos?
Luego de estas acciones, la maestra o el maestro inventará la forma de regresar del paseo.
Le sugerimos que invente un cuento o canto en donde se utilice el vocabulario básico, tomando en cuenta el contexto del estudiante.
Evaluación[editar | editar código]
Luego de trabajar los contenidos propuestos para el logro de la competencia por medio de las actividades sugeridas y aquellas diseñadas por usted, deberá llevar a cabo la evaluación, para comprobar si niñas y niños lograron alcanzar la competencia. Recordemos que la competencia número 2 dice: “Expresa ideas y pensamientos con libertad y coherencia utilizando diferentes signos, símbolos gráficos, algoritmos y términos matemáticos.”
A continuación le hacemos una propuesta de indicadores de logro que le permitirán evaluar la competencia:
- Indicadores de logro
- Compara colecciones o conjuntos de objetos especificando atributos como: muchos, pocos, más que, menos que, tantos como, todos, algunos, ninguno.
- Ordena conjuntos: igual a, menor que, mayor que.
- Establece correspondencia uno a uno entre los elementos de diferentes conjuntos.
- Determina la equivalencia de conjuntos.
- Asocia un conjunto determinado, según el número de elementos, con el numeral correspondiente.
- Identifica elementos que pertenecen a un conjunto determinado.
- Utiliza medidas de longitud no estándar: puño, geme, brazada.
- Utiliza adecuadamente el vocabulario básico conjunto, elementos, atributos (muchos, pocos, más que, menos que, tantos como, todos, algunos ninguno), correspondencia uno a uno, equivalencia.
Para realizar una evaluación basada en la verificación de la consecución de la competencia número 1, en función de los indicadores arriba descritos, le sugerimos efectuar diferentes tipos de evaluación con instrumentos variados, como ejemplo le presentamos la siguiente actividad.
En grupos diferentes de cuatro o cinco niños y niñas hacen una colección de semillas, otro grupo de estudiantes hacen una colección de plantas de todas las clases y colores posibles, pueden ser semillas de maíz, frijol, haba, arveja y otros, hojas de plantas y árboles, etc. Realizan una exposición de semillas y de hojas de plantas en forma ordenada o clasificada, ubicando en cajas o recipientes las semillas de acuerdo a su color, tamaño o utilidad. Invitan a otros grupos de compañeros o compañeras para conservar la exposición de su trabajo y cada integrante explica a los observadores cada uno de los objetos expuestos, al menos tres características, color, tamaño, utilidad. Con una lista de cotejo usted evaluará esta actividad tomando en cuenta los siguientes aspectos:
Criterios | Escala de 1 a 10 puntos |
---|---|
Participación activa del estudiante | |
Desenvolvimiento del estudiante | |
Cantidad de objetos coleccionados | |
Presentación de los objetos coleccionados | |
Identificación de los objetos entre una o varias colecciones | |
Clasificación de los objetos coleccionados | |
Descripción de la actividad por el estudiante | |
Desenvolvimiento del grupo en general | |
Solidaridad entre el grupo | |
Trabajo en equipo |
También los niños y las niñas pueden autoevaluarse en esta actividad.
Es importante la observación de la participación de cada uno de los estudiantes en las diferentes actividades sugeridas anteriormente, para ello es necesario que usted utilice fichas de observación de estudiantes y tener presente la utilización de las mismas en las actividades que considere conveniente
Competencia 4: Utiliza conocimientos y experiencias de aritmética básica en la interacción con su entorno familiar[editar | editar código]
Ir a la Tabla de Competencias para el Bloque 2
Contenidos de aprendizaje[editar | editar código]
Procedimentales | Declarativos | Actitudinales |
---|---|---|
|
|
|
Actividades sugeridas para el desarrollo de la competencia número 2[editar | editar código]
Actividad 1: Conservación de cantidad[editar | editar código]
Divida a los niños y niñas en grupos mixtos de cinco personas y utilicen semillas o tapones de gaseosas. En cada grupo colocan en fila 6 semillas o tapones de gaseosa en el suelo, luego colocan una misma cantidad de tapones o semillas de diferente color a la par. Pregunte si las dos filas tienen el mismo número de objetos. A continuación se modifica una de las filas espaciando más los objetos o transformándolos en un círculo, luego se pregunta al grupo si continúan creyendo o no que los dos conjuntos tienen la misma cantidad de elementos.
Enfatice la relación de uno a uno entre los elementos de dos o más conjuntos para determinar la misma, mayor o menor cantidad al establecer las diferentes comparaciones.
Actividad 2: La señora de los números[editar | editar código]
Había una vez una gallinita que tenía 6 pollitos pero le costaba reconocerlos porque eran muy parecidos y decidió darles un nombre a cada uno. Al primero le llamó Tres porque tenía tres puntitos negros; a otro le llamó Dos por que sus dos patitas eran blancas; a otro le llamó Cuatro porque tenía cuatro manchas coloradas; a otro lo llamó Uno porque tenía una alita chiquitita; a otro lo llamó Cinco porque tenía cinco uñas largas y al otro le llamó Seis porque siempre cantaba pío, pío, pío, pío, pío, pío.
Un día salieron a pasear y de repente se perdió el pollito que tenía el alita chiquitita, el cual era el más travieso. La mamá gallina muy triste empezó a buscar al pollito perdido, pero no sabía cuál era el pollito que se había perdido porque eran parecidos. Empezó a ordenarlos para saber quién era el que se había perdido, al darse cuenta que era el que tenía la alita chiquitita, empezó a llamarlo por su nombre. Cansada de tanto llamarlo, se puso muy triste. En esto se acercó el pollito que dice pío, pío, pío, pío, pío, pío y le dijo: -mamita, no llores que pronto aparecerá; y tratando de consolarse regresaron a su casa. Al día siguiente, el pollito travieso apareció sin su alita y pensó: - ¿Cómo me llamará mi mamá ahora?, pero en ese mismo lugar desapareció otro pollito; la mamá gallina dijo que algo raro pasaba en ese lugar y algo tenía que hacerse porque todos los días tenían que pasar por allí.
Busque usted el desenlace que crea conveniente para este cuento. Después pregunte a los niños y niñas:
- ¿Cuántos pollitos tenía la gallina?
- ¿Cómo se llamaba el pollito que se perdió primero?
- ¿Cómo se llamaba el pollito que se perdió de último?
- ¿Qué nombre le pondrías al pollito que se quedó sin su alita?
Actividad #: 3: Uso mis dedos para contar[editar | editar código]
Los niños y niñas utilizan los dedos de la mano izquierda para contar de uno a cinco, teniendo presente lo siguiente: pueden contar sus dedos sin ningún orden. Ejemplo: 2, 5, 3, 1, señalando el número de dedos correspondiente a cada numeral.
Contando en orden: mencionan de uno a cinco señalando el número de dedos correspondiente a cada numeral.
Contando y analizando: Los niños y niñas cuentan y descomponen los números mayores, por ejemplo, 4 y 5 en números menores tal que: el 4 puede componerse de números menores como 2 y 2 ; 3 y 1; 1,1,1,1. El 5 se puede componer de 1,1,1,1,1; 3, 2; 2,2,1; 4, 1.
El alumnado cuenta y analiza en forma ascendente y descendente de 1 a 5 y de 5 a 1; de 1 a 4 y de 4 a 1; de 1 a 3 y de 3 a 1.
Los niños y niñas relacionan la cantidad de objetos menores que 5 con el numeral correspondiente indicando con los dedos (2 sillas, 4 mesas otros).
Utilizando los dedos de la otra mano, pueden contar del 6 al 10 desarrollando el mismo procedimiento.
“Cantemos juntos” la siguiente canción, u otra que usted crea apropiada:
10 son los dedos que tengo en las manos,
10 son los dedos que tengo en los pies
y si nos gusta cantemos otra vez
10 son los dedos que tengo en las manos
10 son los dedos que tengo en los pies.
Actividad 4: Escribiendo números[editar | editar código]
Para cada numeral se utiliza el procedimiento siguiente:
- Dibuje el numeral en el pizarrón o en un papelógrafo.
- Relacione dicho numeral con la cantidad respectiva de objetos.
- Solicite a los niños y niñas que tracen el numeral en el aire con su dedo índice de la mano derecha.
- Solicite a los niños y niñas que tracen el numeral con el dedo índice de la mano derecha en la espalda de un compañero o compañera.
- Solicite a los niños y niñas que tracen con el dedo índice de la mano derecha el numeral en “la caja de arena” o en el suelo.
- Con “el gusanito mágico” forme este y otros numerales.
- Las y los niños tienen 10 hojas con la gráfica de los numerales de 0 a 9 respectivamente (en un tamaño regular, dibujados por el o por la docente), inician picando con una aguja o palillo el borde de la figura de cada uno de los numerales.
- Los y las niñas anotan en su cuaderno los numerales que hacen falta en series elaboradas por el docente como la siguiente:
Modifique las series a manera de que los estudiantes escriban todos los numerales del 0 al 9.
Actividad 5: La lotería[editar | editar código]
Reparta al alumnado la mitad de una hoja tamaño carta, que han de dividir en 9 partes. Solicite que llenen todos los espacios con numerales del 0 al 9, según deseen.
0 | 8 | 4 | 1 | 2 | 4 | 4 | 8 | 7 | ||
6 | 5 | 9 | 9 | 3 | 5 | 3 | 5 | 1 | ||
2 | 1 | 3 | 0 | 7 | 8 | 0 | 9 | 6 |
Haga tarjetas con los numerales del 0 al 9, que servirán para el niño o la niña que irá sacando los numerales. Conforme vayan saliendo los numerales los niños y las niñas irán marcando con semillas o piedrecillas en su cartón, el numeral que no aparezca en su cartón lo anotará en su cuaderno.
El juego lo ganará el niño o la niña que llene el cartón completo u otro acuerdo al que lleguen en consenso.
Conforme el niño o niña vaya aumentando su aprendizaje de los numerales, se irá aumentando los mismos en el juego de la lotería y en los respectivos cartones u hojas. Ejemplo:
6 | 3 | 2 | 19 |
9 | 7 | 11 | 17 |
2 | 16 | 4 | 13 |
0 | 15 | 8 | 1 |
12 | 18 | 20 | 5 |
22 | 3 | 30 | 19 |
14 | 7 | 11 | 17 |
21 | 16 | 25 | 13 |
26 | 5 | 29 | 1 |
15 | 18 | 23 | 27 |
Le sugerimos que procure que las niñas y los niños cuenten diferentes objetos que se encuentren en el aula según usted lo indique; por ejemplo: número de hojas de su cuaderno, número de semillas de fríjol o palo de pito o granos de maíz que caben en una bolsita de plástico u otro tipo de recipiente pequeño.
Actividad 6: El banco[editar | editar código]
Adquirir semillas de dos colores (se pueden utilizar otros objetos que sean similares a las semillas), una hoja de papel bond dividido en dos partes, en donde se establecerá el tipo de cambio que se jugará, tomando en cuenta diferentes cambios (2x1, 3x1, 9x1) hasta llegar al 10 x 1.
Haga énfasis en la posición de las cantidades, relacionándolas al final del juego con las unidades y decenas. Dispone de una explicación detallada en la El banco (Herramienta pedagógica).
Actividad 7: El ábaco[editar | editar código]
Construir con materiales propios de la comunidad uno o varios ábacos según la cantidad de niños y de niñas. Para la construcción del ábaco se necesitan recursos de la propia comunidad, por ejemplo 2 pedazos de alambre galvanizado, tapitas o tapones de colores rojo y azul perforadas por el centro, 2 juegos de cartoncitos de 2x2cms con los numerales del 0 al 9 y un trozo de madera o leña. Se recomienda tener un ábaco para cada grupo de 3 o 4 niños y niñas.
Trabajar en grupo implica que quienes lo integran, tienen que participar, permitiendo a cada grupo organizar los turnos o participaciones.
Establezca la regla por cada 10 tapitas que se encuentran en la primera fila, se cambiará por otra de otro color en la siguiente fila.
Este instrumento permite la agrupación de objetos, según la regla específica (para nuestro caso tomar grupos de 10 en 10). Cada grupo trabajará con su ábaco, en primer lugar con la orientación del maestro o de la maestra (se repite el ejercicio varias veces para que los niños y las niñas comprendan el proceso).
Posteriormente, en cada grupo harán ejercicios según su deseo o interés con cantidades que estén en el ámbito del 0 al 99.
Inicio del juego
Se coloca en la primera fila (lugar de las unidades, de derecha a izquierda)1tapita, y se pregunta: -¿Cuántas tapitas hay?
Luego, se coloca otra tapita, y nuevamente se pregunta: -¿Cuántas tapitas tenemos en la fila? Luego, se coloca otra tapita (llevaríamos 3) y se pregunta: -¿Ahora cuántas tapitas llevamos?
Se continúa la colocación de tapitas (4, 5, 6, 7, 8, 9) hasta llegar a 10 tapitas (del mismo color); en este momento se lanza la pregunta: -¿Qué podemos hacer?
Se procede a quitar las 10 tapitas que están en el lugar de las unidades y en seguida se coloca una tapita de diferente color en el lugar de las decenas.
Se lanza la siguiente pregunta: -¿Cuántas tapitas hay en la primera fila? (ninguna). Pregunte: -¿Cuántas tapitas hay en la segunda fila? (una).
Se coloca en la primera fila un cartoncito con el numeral cero “0” y se coloca en la segunda fila otro con el numeral uno “1”, para representar la cantidad de tapitas que hay en la segunda fila. Seguidamente, se lee la cantidad representada (que los niños y las niñas expresen la cantidad representada (en este caso sería 10).
Se repite el procedimiento varias veces para que los niños y las niñas comprendan el proceso, identifiquen, lean y escriban en su cuaderno las cantidades construidas.
Se continúa el juego con el mismo procedimiento de manera que se tome en cuenta que a cada diez unidades se cambia a una decena.
Elevar nivel de dificultad
Para la construcción del ábaco se necesitan recursos de la propia comunidad, por ejemplo: 2 pedazos de alambre galvanizado, tapitas, o tapones de dos colores (rojo y azul) perforadas por el centro, dos juegos de cartoncitos de 2 x 2 cms. con los númerales del 0 al 9 y un trozo de madera (leño). |
Tome en cuenta que un objeto colocado en la segunda posición, representa diez unidades, 2 objetos, representan 20 unidades, etc. Teniendo una tapita en las decenas y nada en las unidades, se procede a colocar más tapitas en el lugar de las unidades hasta llegar otra vez a diez, en este momento se preguntan: -¿Qué hacemos?
Se esperará a que las niñas y los niños contesten que se deben quitar las diez tapitas de la primera fila y colocar una más en la segunda fila. Posteriormente, se pregunta: ¿Cuántas tapitas tenemos en la primera y en la segunda fila? ¿Qué cantidad se está representando en este caso? (se representa el número 20). Se coloca el cartoncito con el numeral “0” en la primera fila y el cartoncito con el numeral “2” en la segunda fila, lo que representa al numeral “20”. Cada grupo construirá otras cantidades según deseo o interés, escribiendo el numeral en su cuaderno o bien en hojas de papel bond (ámbito de numerales entre el “0” y el “99”).
Variable 1
Un niña o un niño pasará al frente y se le pedirá que coloque, por ejemplo, tres tapitas en la primera fila y 1 tapita en la segunda fila.Se pregunta: -¿Qué cantidad tenemos en esta representación? Con este ejercicio como ejemplo, en cada grupo se procederá a realizar otros ejercicios. Se puede invertir el proceso, lanzando los siguientes cuestionamientos: Representar en el ábaco los siguientes numerales: 9, 15, 25, 30, 44, 59, 88, 99, entre otros. Se puede nombrar a un niño o a una niña para realizar un ejercicio o bien realizar las actividades en grupo.
Variable 2:
Para reforzar los procesos de agrupación y el desarrollo del cálculo mental, se sugiere realizar el siguiente juego:
Se elabora en el piso un cuadro con dos columnas (utilizar cinta adhesiva o bien otro material adecuado para hacer las columnas). Participan en primer lugar dos niños o niñas. Cada alumna o alumno representa las unidades y las decenas (de derecha a izquierda). Se pide a los niños y a las niñas que se coloquen en la primera columna, en este caso representarán a dos unidades. Luego se pide que se coloquen uno en la primera columna y otra en la segunda columna; en este caso representarán el numeral “11”.
Se pide que ambos se coloquen en la segunda columna. Se pregunta: -¿Qué cantidad están representando? En este caso representan el “20” (hay dos en la segunda columna y nada en la primera columna). Para continuar el juego se va aumentando la cantidad de niños o niñas hasta llegar 6 participantes. Se pide que representen los siguientes numerales: 15 (en este caso se colocarán 5 en la primera columna y una en la segunda columna). Se pide que representen los numerales 24, 42, 51, etc.
Le sugerimos que apoye a cada grupo para el buen desarrollo de la actividad.
Verifique en cada grupo el cumplimiento de la lectura y escritura de los numerales correctamente, tomando en cuenta la posición de los numerales (unidades y decenas). Oriente al alumnado para que después de la construcción de cantidades en el ábaco, dibujen el ábaco y las tapitas y escriban el numeral representado en su cuaderno. En la actividad de las columnas, tenga en cuenta que se está reforzando la lectura y comprensión de numerales ubicados según su posición, así como el inicio del desarrollo del cálculo mental al tener que desplazarse de una columna a otra para la formación de los numerales.
En cada uno de los numerales formados tanto en la actividad “El Banco” como con la utilización del ábaco, se le sugiere que los niños y las niñas escriban los numerales ya sea en el pizarrón, cuaderno o bien en pliegos de papel manila, para que seguidamente los lean, en forma individual o grupal.
Actividad 8: Juego de cantidades[editar | editar código]
Forme grupos mixtos de 3 integrantes. A cada grupo se le proporcionará materiales como semillas, tapitas, palitos, piedrecitas o pajillas (25 objetos en una primera parte). Pida a quienes integran el grupo que realicen el conteo de los objetos que tienen en la mesa, de forma que cada grupo tenga la misma cantidad. Indique la cantidad que deben tomar para iniciar el juego. Por ejemplo, toman 8 objetos y los colocan en el centro de la mesa, el resto los colocan en un lugar separado; seguidamente se realizan las siguientes preguntas en forma oral o escrita: ¿Cuántos objetos tienen en el centro de la mesa? (8), ¿Cuántos grupos de cuatro podemos formar? (2) ¿Cuántos objetos nos sobran? (nada). ¿Cuántos grupos de 2 podemos formar? (4) ¿Cuántos objetos nos sobran? (nada). ¿Cuántos grupos de 3 podemos formar? (2) ¿Cuántos nos sobran? (2) ¿Cuántos grupos de 5 podemos formar? (1) ¿Cuántos nos sobran? (3) ¿Cuántas unidades tenemos en total?
La idea es que el niño o la niña descubra las diferentes agrupaciones que se pueden obtener de una misma cantidad numérica, recomendándoles que se inicie con cantidades pequeñas para ir a cantidades mayores. Por ejemplo: Se colocan en el centro de la mesa de cada grupo los 25 objetos. En este caso se les pide que den respuesta a las siguientes preguntas: ¿Cuántos grupos de cinco podemos formar? (5) ¿Cuántos objetos nos sobran? Nada (0) ¿Por qué creen ustedes que no nos sobró nada?
Para la siguiente pregunta es necesario incluir grupos de 10, decenas y unidades: ¿Cuántos grupos de 10 podemos formar? ¿Cuántos objetos nos sobran? ¿Cuántas decenas tenemos? Y ¿Cuántas unidades nos quedan? ¿Cuántas unidades tenemos en total?
Le sugerimos que realice preguntas de juicio crítico como: ¿Con las diferentes agrupaciones realizadas, cambió el total de objetos? Tomen cuenta para las agrupaciones a los propios niños y a las propias niñas.
Actividad 9: “igual a”, “menor que”, “mayor que”[editar | editar código]
Los niños y las niñas participan en el juego “Formo el número...” (en forma individual). Luego anotan los números de 0 a 9 en tarjetas pequeñas (un juego de estos números es suficiente). Utilizan una hoja de papel donde dibujarán un cuadrado de esta forma, anotando en las columnas la posición de las unidades ”U” y la posición de las decenas “D”. Las y los niños siguen las instrucciones “formo el número mayor”.
Anotan inmediatamente el número que se tomará del juego de dígitos en cualquiera de las columnas y no podrán borrarlo después (este número tomado del juego de dígitos ya no se volverá a incluir hasta el siguiente juego). Hacen lo mismo para el siguiente número que se tomará del juego de 9 dígitos que había quedado. Luego responden quién formó el número mayor. Por ejemplo: Alguien toma una de las tarjetas (digamos que salió el 6) entonces anotan inmediatamente este numeral en cualquiera de las dos columnas, sin embargo, deben de pensar que el número a formar es el mayor y debe de ser de dos dígitos (este número ya no se incluirá en el juego).
Se vuelve a tomar otra tarjeta (digamos que sale el 3), anotan este numeral en la columna que no habían utilizado, ahora observan el numeral que formaron puede existir dos posibilidades “63” y “36”. Pregunte quién tiene el número mayor, levantarán la mano quienes hayan anotado el “63”. Pregunte en qué posición o columna vale más el “6”, en qué posición vale menos. Se hace el mismo procedimiento para jugar “formar el número menor”.
Le sugerimos que realice este juego varias veces para reforzar los aprendizajes. Identifique y apoye a los niños y a las niñas que tienen alguna dificultad en este procedimiento.
Actividad 10: Salta mi Conejito saltarín 0[editar | editar código]
Proporcionar a cada niño y niña la siguiente lámina, la observan y comentan en pareja el contenido. Seguidamente cada quien completa la serie numérica, escribiendo los numerales que hagan falta para ayudar al conejo a encontrar la zanahoria. Habiendo colocado los numerales que hagan falta, pintar el dibujo y platicar en pareja sobre los siguientes aspectos: ¿Qué numerales escribieron? ¿Después del 10 qué numeral escribieron? ¿Antes del 3 qué numeral escribieron? ¿En qué numeral inició el recorrido el Conejito saltarín? ¿Cuántos saltos dió para llegar a la zanahoria? Colocar en exposición los trabajos elaborados por los niños y las niñas (en la pared o bien en un lazo o pita, simulando el tendedero).
Elaboraremos con los niños y con las niñas una recta numérica con papel manila, de la siguiente manera:
Esta recta numérica servirá para reafirmar en el alumnado la numeración vista con anterioridad.Se utilizará para realizar ejercicios de “antecesor” (numeral que está antes de) y “sucesor” (numeral que esta después de).
Realice las siguientes preguntas para que niños y niñas observen y descubran qué numeral va antes y después: para antecesor, ¿Qué numeral va antes de 2? Para sucesor, ¿Qué numeral va después de 5?
Repita varios ejercicios con esta recta numérica. Posteriormente eleve el nivel de dificultad dentro de otra recta numérica, en donde no aparecen algunos numerales, para que el niño o la niña tengan la oportunidad de colocar y completar con el numeral correcto. Para este caso se utilizarán tarjetitas con varios numerales para que niñas y niños identifiquen y coloquen el numeral correcto.
Le sugerimos que realice varios ejercicios, comenzando por lo más simple para llegar a lo más complejo. Observe el trabajo que cada grupo realiza. Lleve a cabo otros ejercicios con los mismos niños y niñas. Por ejemplo, utilizando la edad, estatura, sexo.
Actividad 11: Los símbolos de la numeración maya[editar | editar código]
Cuentan que hace muchos años los niños y las niñas mayas relacionaron las partes de su cuerpo con los números, utilizando las manos, dedos, brazos y piernas. Por esa razón en muchos idiomas indígenas en la actualidad se dice Juwinäq, Winäq, o alguna otra expresión equivalente.
Descubrieron que el numeral cero tiene la forma de un puño cerrado: es el inicio de conteo “cero”. También descubrieron que el numeral cinco que encierra cinco unidades tiene la forma de un brazo (conteo completo de cinco dedos de una mano) o de los pies. Si contamos los dedos, dicen los niños y niñas mayas, tenemos en total veinte dedos, tenemos cuatro extremidades (dos brazos y dos piernas...) por lo tanto un niño o niña esta formada o formado matemáticamente. (Puede traducirse la historia al idioma maya.) |
Pida a los niños y niñas que comenten la historia y verifiquen el contenido asociándolo con las partes del cuerpo que se menciona.
Utilice la herramienta Mi Matemática Maya. Además de la herramienta anterior se puede utilizar el “Tendedero de numerales Mayas”, que se complementará de acuerdo al contexto cultural, étnico y lingüístico.
El uso del tendedero esta relacionado a las siguientes acciones: Leer y escribir los numerales mayas utilizando el idioma español e idiomas indígenas. Ordenar los numerales mayas en forma ascendente y descendente, según el caso lo amerite. Relacionar un numeral con cantidades de objetos. Pronunciar según el contexto étnico y lingüístico los numerales maya en idiomas propios de la región; aprovechando para incluir también la pronunciación en idioma maya de los números ordinales del 1 al 10.
Le sugerimos que elabore los numerales mayas con recursos propios de la comunidad.
Fomente en los niños o las niñas que hablen un idioma maya, que se expresen con confianza y que orienten la pronunciación de los números (por ejemplo: jun = 1, ka’ib’ = 2, oxib’ = 3, etc.). Desarrolle actividades en donde se puedan ver o descubrir numeración maya (ejemplo: billetes, libros, periódicos, almanaques, etc.)
Enfatice la importancia de numerales como la barra (cinco) que significa cinco puntos, o cinco puntos lo cambiamos por una barra, el cambio que se realiza es fundamental el procedimiento es lo mismo para dos y tres barras. Aproveche la escritura de los numerales mayas para la utilización de los numerales ordinales en idiomas mayas, es decir, como se dice primero, segundo, tercero hasta décimo en idioma indígena. Aplique el concepto de numerales y ordinales con las niñas y los niños en actividdes cotidianas en la escuela, para todas estas actividades, es conveniente el uso del idioma indígena.
Actividad 12: Adición[editar | editar código]
Las estudiantes y los estudiantes se organizan en grupos mixtos de 9 (podrán haber tantos grupos de 9 como niños y niñas hayan en el grado). Cada grupo se ordena en fila todos deberán tener un lápiz de tamaño regular en la boca y cada grupo debe de tener 10 rueditas elaboradas de papel. Todos y todas deberán estar atentos para recibir de un compañero o compañera la ruedita de papel con su lápiz y pasarlo de la misma manera a su compañero o compañera que le sigue.Todos los grupos deben de iniciar al mismo tiempo a una señal del maestro o maestra, el grupo que logra pasar la mayor cantidad de rueditas de papel hasta el último niño o niña en dos minutos, es el que gana el juego.
Cada grupo contará el número de rueditas que lograron pasar durante los dos minutos y lo escribirá en una hoja de papel. Luego, entre todos los grupos juntarán la cantidad de rueditas que lograron pasar para obtener el total. Las niñas y los niños se organizan en grupos de cuatro o cinco para realizar la siguiente actividad: Cada miembro del grupo aportará cierta cantidad de objetos (por ejemplo, tapitas) para formar un conjunto de 8 elementos (8 tapitas). Luego, cada miembro del grupo debe mencionar cuántos objetos aportó para formar este conjunto. Un representante de cada grupo expondrá a la clase la cantidad de objetos que aportó cada integrante para formar el conjunto de 8 elementos. Las niñas y los niños identifican y forman el símbolo de la suma y el signo igual con dos palillos o con dos lápices, luego lo dibujarán en su cuaderno. Comentan por qué creen que ese es el símbolo de la adición.
Utilizando numerales, las niñas y los niños resuelven operaciones de adición en forma vertical agrupando y sin reagrupar, por ejemplo:
13
+24 --- |
10
+20 --- |
25
+25 --- |
Realizan operaciones de adición en forma horizontal ejemplo:
12 + 4 = | 19 + 19 = | 18 + ? = 36 | 15 + ? = 15 |
Actividad 13: Yo tenía 10 perritos (sustracción)[editar | editar código]
Los niños y niñas participan cantando la siguiente canción:
Yo tenía diez perritos, yo tenía diez perritos
uno se cayó en la nieve, no me quedan más que nueve, nueve, nueve.
De los nueve que tenía (bis)uno se comió un bizcocho
y no me quedan más que ocho, ocho, ocho.
De los ocho que tenía (bis) uno se comió un mollete
y no me quedan más que siete, siete, siete.
De los siete que yo tenía (bis), uno
se llevó Moisés y no me quedan más que seis, seis, seis
De los seis que yo tenía (bis) uno se murió de un brinco
y no me quedan más que cinco, cinco, cinco.
De los cinco que tenía (bis) uno se llevó el gato
y no me quedan más que, cuatro, cuatro.
De los cuatro que tenía (bis) uno se llevó Inés
y no me quedan más que tres, tres, tres.
De los tres que yo tenía (bis) uno se murió de tos,
y no me quedan más que dos, dos, dos.
De los dos que yo tenía (bis) uno se llevó don Bruno
y no me quedan más uno, uno, uno.
El perrito que quedaba (bis) se comió una empanada y no
me queda nada, nada, nada.
Los niños y las niñas analizan el canto e indican con sus dedos la cantidad de perritos que se mencionan. Explican qué deberían hacer para cuidar a los perritos y otros animales que conocen.
Las niñas y los niños identifican y forman el símbolo de la resta y el signo igual con dos palillos o con dos lápices, luego lo dibujarán en su cuaderno. Comentan por qué creen que ese es el símbolo de la sustracción. Utilizando numerales, las y los niños resuelven operaciones de sustracción en forma vertical reagrupando y sin reagrupar, ejemplo:
12
-2 --- |
14
-12 --- |
25
-5 --- |
Realizan operaciones de sustracción en forma horizontal, ejemplo:
19 - 4 = | 26 - 13 = | 25 - ? = 11 |
Le sugerimos que haga uso de la herramienta Agrupo, resto y compruebo para ejercitar la adición y la sustracción. Además, para que el aprendizaje sea dinámico y cooperativo se sugiere utilizar las herramientas siguientes: El cincho sumador, el gusanito sustractivo, el gusanito más y menos.
Actividad 14: Lo partes en partes[editar | editar código]
Entregue a los niños y las niñas una hoja de papel bond tamaño carta (reciclada) o bien una hoja de periódico, para realizar lo siguiente:
Pregunte a los niños y niñas ¿que tienen en la mano? (una hoja, un pedazo de papel u otra expresión). Solicite que partan el papel que tiene en sus manos en DOS PARTES (note que se les esta pidiendo partir en dos partes sin decirles partes iguales.) Cada niña o niño observará lo que realizaron los otros compañeros y compañeras para ver como hicieron la partición (probablemente existan muchas formas de partición).
Algunos niños y niñas expresan cómo lo hicieron y qué observaron de las otras compañeras y compañeros. Lo importante en este caso es que el término partir no esta todavía ligado a partes iguales, se hará más adelante, pero en primer lugar se debe pasar por esta experiencia. Pregunte: ¿Qué cosas han partido en su casa? ¿Cómo lo hicieron? ¿Con qué lo hicieron?
Seguidamente, se les puede proporcionar otra hoja de papel, para que realicen otra partición, pero con la condición de que sea en PARTES IGUALES. Pregúnteles cómo lo hará y por qué lo harán así. Observe que todos los niños y todas las niñas realicen la partición según la condición expresada. Luego, se pedirá que comparen las dos partes de la unidad y que expresen qué observan.
Posteriormente, se pedirá una fruta (preferentemente una manzana, naranja o bien una fruta propia de la comunidad que sea redonda o similar) Se pedirá que partan la fruta en partes iguales, que observen lo que hicieron y comenten con sus compañeras y compañeros su experiencia. Se preguntará: ¿En cuántas partes se partió la fruta (la unidad)? (2) ¿Cómo se llama a una de las dos partes? (la mitad dirán los niños) ¿Cuántas mitades tienen? (dos). En este momento se les explicará que a efectos de escritura a cada una de estas dos partes se las llamará “un medio” o “uno de dos partes” (1/2). En primer lugar se escribirá con letras “un medio” y luego se hará con números “1/2”.
Acto seguido el niño o la niña dibujará un cuadrado y lo dividirá en dos partes iguales, en una de las partes se colocará “1/2” como representación de la partición hecha.
Dependiendo del contexto lingüístico y étnico, se pedirá a los niños y a las niñas que digan cómo se expresa en su idioma materno ”un medio” y qué representa para ellas y ellos esta acción (por ejemplo: mij = mitad, en idioma Mam, nik’aj = mitad en idioma Achi, etc.)
Le sugerimos que insista en que una hoja que se divide en 2 mitades iguales es siempre la misma hoja, es decir, una unidad esta compuesto por dos mitades • y •. Observe si las niñas y los niños comprendieron el proceso, antes de llegar a la representación de los dos medios como una unidad (2/2 = 1). De preferencia utilice cuadernos cuadriculados, para facilitar la comprensión (simbólica y grafica) de la fracción. Utilizace vocabulario básico: número, numeral, notación, números naturales, números ordinales, números fraccionarios, numerador, denominador, un medio, un cuarto, suma, resta, antecesor y sucesor.
Actividad 15: Los numerales[editar | editar código]
El o la docente formará grupos de 3 niños y niñas, en cada grupo elegirán a alguien que coordine.
El o la docente escribirá nombres de grupos en papelitos (según el aprendizaje de grafías o sílabas de letras ya conocidas), los cuales sorteará.
El o la docente oralmente dirá los numerales que formarán con la herramienta pedagógica el gusanito mágico, por ejemplo, solicitará que formen los numerales: 3, 8, 15, 26, 31, 46, 50, 66, 72, 84, 93 y 99.
El o la docente, escribirá en el pizarrón o en un papelógrafo los nombres de cada grupo e irá anotando con una X el puesto en el que cada grupo logra terminar cada una de las tareas: primero, segundo, tercero, cuarto, quinto, sexto, séptimo, octavo, noveno y décimo, por ejemplo:
Nombre del Grupo | Primero | Segundo | Tercero | Cuarto | Quinto | Sexto | Séptimo | Octavo | Noveno | Décimo | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
"a" | |||||||||||
"e" | |||||||||||
"u" | |||||||||||
"ma" | |||||||||||
"po" | |||||||||||
"sa" | |||||||||||
Etc. |
Seguidamente, se solicita a los grupos que mencionen cuántas veces fueron primero, segundo, tercero, etc.
Pídales que recuerden cuatro numerales que se les pidió que hicieran y que los escriban en su cuaderno.
Cada grupo escribirá por lo menos 2 números que hayan formado más rápido y lo sumarán para obtener un total.
Usted, a través de una dinámica, formará grupos de 4 participantes. Quienes integran cada grupo, tomarán una hoja de su cuaderno y la doblarán en 2 partes iguales, luego, repasarán con lápiz la señal del doblez. El o la docente solicitará que escriban en una parte (cualquiera de las 2) palabras que ya conocen, luego escribirán la cantidad de letras que escribieron; por ejemplo:
Pipa Mapa Pala 18 |
Le preguntamos a cada grupo: ¿Cuántas letras escribieron en total? ¿Cuántas partes de la hoja usaron? ¿Cuántas no usaron?
El o la docente les dirá que usaron 1 de 2 partes. Pida a niñas y niños que coloreen la parte usada y que escriban en la otra parte de la hoja palabras que ya conocen, (pero que no se repitan las que ya escribieron en la primera parte) luego escribirán la cantidad de letras que escribieron, como lo hicieron en la ocasión anterior. Y siga una dinámica de preguntas y respuestas similar.
Observe la participación de todos los niños y niñas y pídales que escribirán en un papelógrafo las palabras matemáticas que utilizaron en estas actividades, buscarán un título apropiado y lo pegarán en la pared de la clase. Le sugerimos que para que los niños y niñas generen un aprendizaje sólido y significativo les inste a que formen numerales con la sopa de números. El juego de “la lotería de números” es fundamental.
Evaluación[editar | editar código]
Luego de trabajar los contenidos propuestos para el logro de la competencia a través de las actividades sugeridas y aquellas diseñadas por usted, deberá llevar a cabo la evaluación, para comprobar si todas las niñas y todos los niños lograron alcanzar la competencia. Recordemos que la competencia número 2 dice: “Utiliza conocimientos y experiencias de aritmética básica en la interacción con su entorno familiar.”, le hacemos la siguiente propuesta de indicadores de logro:
- Indicadores de logro
- Cuenta objetos de su entorno y expresa las cantidades con un numeral.
- Ordena series numéricas utilizando: "mayor que", "menor que", "igual qué".
- Escribe numerales en series de 2 en 2, de 3 en 3, de 5 en 5.
- Ubica números en la recta numérica hasta el 99.
- Lee y escribe numerales mayas hasta 20.
- Ordena números mayas en forma ascendente y descendente.
- Identifica el sucesor y antecesor de un número en una recta numérica.
- Determina el valor relativo y absoluto de un número de acuerdo a la posición que ocupa.
- Elabora listas indicando el orden de los elementos de primero al décimo.
- Efectúa sumas y restas de números naturales cuyos totales son iguales a, o menores que 100 sin transformación de unidades ("sin llevar").
- Resuelve problemas utilizando la suma y la resta.
- Analiza las diferentes soluciones para un problema y selecciona la operación que lo resuelve.
- Compara una parte con la unidad.
- Escribe la fracción que corresponde a la parte sombreada de una figura.
- Utiliza con propiedad el vocabulario básico.
Para medir el alcance de los indicadores de logro y comprobar cómo se ha llegado a la competencia puede llevar a cabo diferentes tipos de evaluación con distintos instrumentos. Por ejemplo puede poner en práctica la autoevaluación con un ejercicio como el que se describe.
Las y los estudiantes se formarán en 5 grupos heterogeneos (cada grupo deberá tener una cantidad similar de estudiantes, grupos de dos, grupos de tres, grupos de cuatro según la cantidad total de niños y niñas que haya en el grado).
Utilizando un papelógrafo escribirá cada grupo lo que a continuación se le pide:
- En el primer grupo, los niños y niñas escribirán todos los numerales del 0 al 20.
- El segundo grupo escribirá los numerales del 21 al 40. o El tercer grupo escribirá del 41 al 60.
- El cuarto grupo escribirá del 61 al 80.
- El quinto grupo escribirá del 81 al 99.
- Cada grupo escribirá la tarea respectiva en un papelógrafo. o Cada uno de los grupos pega su trabajo en la pared siguiendo el orden de los numerales del 0 al 99.
Por otro lado, puede realizar pruebas objetivas elaboradas por usted, puede seleccionar junto con sus estudiantes diversos trabajos para integrar un portafolio para el niño o la niña, y puede elaborar un mapa conceptual para que los niños y niñas lo completen.
Finalmente, puede formar grupos de 5 niñas y niños para que resuelvan problemas que usted redacte, no olvide que los problemas tienen que estar relacionados con el contexto y actividades cotidianas del alumnado y escritos con un lenguaje sencillo y con vocabulario que sus niñas y niños manejen, de otra forma no los entenderán.
En este bloque manejaremos problemas simples, que impliquen adición y sustración, como el que sigue:
La mamá de Lola tiene 3 canastos y compra 2 canastos más. ¿Cuántos canastos tiene la mamá de Lola?
Seguidamente en grupo lo resolverán formalmente (utilizando papel y lápiz). Aumente el nivel de dificultad según el aprendizaje de los niños y las niñas, tomando en cuenta que los problemas deben estar relacionados con las actividades de su vida cotidiana.
Competencia 5: Expresa opiniones sobre hechos y eventos de la vida cotidiana[editar | editar código]
Ir a la Tabla de Competencias para el Bloque 3
Contenidos de aprendizaje[editar | editar código]
Procedimentales | Declarativos | Actitudinales |
---|---|---|
Identificación y relación cuantitativa de detalles importantes en eventos y sucesos. Predicción de lo que puede ocurrir. Recopilación de datos en forma cualitativa y cuan- titativa. Clasificación de datos según atributos. Conteo y presentación de la información reco- pilada. Identificación y resolución de problemas. Aplicación de la suma o resta para la resolución de problemas Seguimiento de reglas e instrucciones en los jue- gos que realiza. Propuesta de modi- ficaciones a juegos con reglamento. Elaboración de regla- mentos en la ejecución de juegos propios de su comunidad. Utilización adecuada de vocabulario básico: detalles importantes, predicción, solución a un problema, reglas, re- glamentos. |
Predicción de eventos. Recopilación de datos. Resolución de problemas matemáticos elementales escolares. Juegos con reglas. Vocabulario básico. |
Participación voluntaria en los juegos con reglas, demostrando respeto por los y las demás. Escucha activa para poder seguir las reglas del juego. Espera del turno para participar. |
Actividades sugeridas para el desarrollo de la competencia número 5[editar | editar código]
Actividad 1: Las personas ciegas[editar | editar código]
Motive a las niñas y los niños a participar en la siguiente dinámica: en grupos mixtos de cuatro seleccionan a alguien que hará el papel de persona ciega que caminará entre obstáculos o peligros: quien de todas las personas los pase primero ganará el juego.
Cada grupo formará un círculo y dentro del círculo colocarán obstáculos, botellas de plásticos vacíos u otros objetos que estén al alcance. Quien hace el papel de persona ciega, con los ojos vendados, caminará entre estos objetos cuidando de no tumbarlos. Pueden hacer un ensayo sin vendarse los ojos. Cuando los ciegos o las ciegas se hayan preparado, usted dará la señal de salida e, inmediatamente, alguien del grupo quitará estos obstáculos y, sin decirle nada al ciego o la ciega, quien intentará realizar esta actividad. Cada grupo dará ánimo a su representante respectivo sin mencionarle que en realidad no hay obstáculo. Cuando el ciego o la ciega cree llegar a la meta salvando los obstáculos, termina el juego.
Quienes hicieron el papel de la persona ciega, comentan las dificultades que percibieron al estar caminado entre los obstáculos.
¿Qué hicieron o pensaron para salvar estos obstáculos?
¿Qué recomendarían al resto de compañeras y compañeros para realizar esta actividad?
El resto de cada grupo menciona qué observaron, qué acciones realizó el compañero o la compañera ciega. También mencionan o evalúan la actividad de su compañero o compañera ciega. Para esta actividad se necesitan botellas de plástico u otros materiales blandos y un pañuelo o tela para vendarle los ojos a los niños o niñas.
Le sugerimos que en el juego anterior participen el mayor número posible de niños y niñas haciendo el papel de persona ciega.
Tenga cuidado en el uso de material blando para que los niños y niñas no se lastimen en esta actividad. Sugiera a los y las estudiantes que creen otro tipo de juegos donde sea preciso establecer normas o reglas.
Actividad 2: Lo que puede ocurrir[editar | editar código]
Las niñas y los niños mencionan qué significa para ellos y para ellas un problema, por qué creen que es un problema. Seleccionan un problema mencionado por ellos o ellas mismas y dicen si tiene una, varias o ninguna solución. Analizan un problema e identifican los datos conocidos y desconocidos, dibujan el problema, seleccionan la operación adecuada para resolver el problema (suma o resta), realizan la operación utilizando los datos necesarios, encuentran el resultado, verifican si el resultado resuelve el problema.
Plantee problemas de la vida cotidiana, por ejemplo: si llueve, ¿Qué haríamos para no mojarnos y llegar a casa?, este tipo de problemas puede tener diferentes soluciones según respuestas de los niños y las niñas y es necesario escribirlos en el pizarrón para que el niño y la niña los observen y analicen todas las respuestas que solucionen el problema.
Aproveche el estado del tiempo y diferentes situaciones de la vida cotidiana para realizar preguntas como: ¿Lloverá hoy? ¿Por qué? ¿Qué pasaría si no llueve por mucho tiempo? ¿Qué pasaría si cortamos los árboles? ¿Qué pasaría si no nos cepillamos los dientes después de comer? ¿Qué pasaría si no hacemos ejercicios? ¿Que pasaría si no hacemos nuestras tareas escolares? ¿Qué pasaría si no hacemos limpieza en la escuela?
Le sugerimos que, en grupos mixtos, los niños y las niñas ejemplifiquen en la caja de arena o en el suelo las consecuencias de la lluvia cuando encuentran un lugar deforestado, y viceversa.
Enfatice la importancia de la reforestación para la conexión con otras áreas.
Actividad 3: Resolvamos problemas[editar | editar código]
Los niños y las niñas, en grupos mixtos de cuatro, realizan las siguientes actividades de resolución de problemas de sumas y restas.
Es importante que el o la docente tome en cuenta el vocabulario de su alumnado para plantear un problema, además debe de permitir que niños y niñas planteen y resuelvan sus propios problemas.
Para los problemas de sumas y restas se sugiere usar la herramienta “Resolución de problemas”.
Le sugerimos que el alumnado realice diferentes juegos con intenciones de generar el aprendizaje de la matemática; para ello es necesario realizar juegos en los que el niño o la niña generen sus reglas y que se familiaricen con las mismas, por ejemplo, un juego de fútbol, un juego de baloncesto, juego del avión o pijije.
Actividad 4: Encuentro el número escondido[editar | editar código]
El alumnado se organiza en grupos de cuatro para participar en el juego de encontrar más rápido el número escondido. Para ello usted debe elaborar hojas de trabajo similares a la siguiente:
Hoja de trabajo para grupos de cuatro estudiantes. Encuentre el número escondido:
Tengo | Agrego o quito |
Resultado |
---|---|---|
Los niños y las niñas resuelven otras hojas de trabajo similares, el número escondido en este caso es el 2, puede elaborarse otras hojas que tengan otros números escondidos. Usted debe enfatizar que este es un juego y que se podrá resolver respetando las reglas, en este caso de suma o resta.
Genere preguntas entre el alumnado como: ¿Qué pasaría si cambiáramos las reglas del juego?, ¿Qué reglas cambiaríamos?, ¿Por qué las cambiamos? Creamos otros juegos en donde generemos y respetemos las normas. Recomendar a los niños y a las niñas que observen siempre las normas de los juegos que conozcan en el recreo y en juegos que practiquen fuera de la escuela.
Le sugerimos que intente crear otro tipo de juegos con la participación de todos los niños y las niñas estableciendo las reglas propias y verifique el cumplimiento de las mismas. Enfatice en todo momento que la matemática es un juego en donde se han establecido reglas o normas que hay que respetar; por lo tanto se debe disfrutar de esta área como un juego.
Actividad 5: El vocabulario básico[editar | editar código]
Solicite al alumnado que se organice en grupos mixtos de cuatro para elaborar un pequeño libro de texto con la mitad de una hoja de papel bond. Le asigna el siguiente título al libro: “Vocabulario básico”.
En la primera página escribirán el nombre de quienes integran el grupo. En la segunda página escriben como título: “Problemas de mi escuela”. Seguidamente harán un dibujo que se relacione con el título.
En la tercera página escriben como título “¿Qué pasará?” y dibujan lo que creen que pasará como consecuencia del problema dibujado en la página anterior.
En la siguiente página escribirán como título “Lo que no debemos hacer” y escriben todas las ideas que consideren que no deberían hacer, porque es dañino para su escuela. En la siguiente página escriban como título “Lo que debemos hacer” y anoten todas las ideas que consideren conveniente hacer como beneficio para su escuela. En la siguiente página, dibujan su escuela en un ambiente agradable, con flores, rodeado de árboles, pájaros, etc. y colorean el dibujo. Con la ayuda del o de la docente, engrampen o cosen su pequeño libro de texto y lo expongan en algún lugar visible del aula.
Evaluación[editar | editar código]
Luego de trabajar los contenidos propuestos para el logro de la competencia por medio de las actividades sugeridas y aquellas diseñadas por usted, deberá llevar a cabo la evaluación, para comprobar si niñas y niños lograron alcanzar la competencia. Recordemos que la competencia número 5 dice: “Expresa opiniones sobre hechos y eventos de la vida cotidiana”, le hacemos la siguiente propuesta de indicadores de logro que le permitirán evaluar la competencia:
- Indicadores de logro
- Describe la situación que determina un problema.
- Identifica y relaciona cuantitativamente detalles importantes en eventos y sucesos.
- Recopila datos en forma cualitativa y cuantitativa.
- Clasifica datos según atributos.
- Presenta información recopilada.
- Identifica y resuelve problemas.
- Aplica la suma o resta para la resolución de problemas.
- Sigue reglas e instrucciones en los juegos que realiza.
- Propone modificaciones a juegos con reglamento.
- Elabora reglamentos en la ejecución de juegos propios de su comunidad.
- Utiliza adecuadamente vocabulario básico: detalles importantes, predicción, solución a un problema, reglas, reglamentos.
Para poder poner en práctica la verificación del logro de la competencia número 5, en función de los indicadores de logro arriba descritos, le proponemos las siguientes técnicas e instrumentos de evaluación:
Para los primeros indicadores, puede emplear una metodología interrogativa, oral, en la que a través de preguntas y respuestas puede averiguar cuál ha sido el avance del alumnado. También le recomendamos que realice actividades de evaluación en las que niñas y niños deben dibujar o esquematizar la actividad que realizaron anteriormente, este material lo podemos evaluar posteriormente y puede servir para que el alumno o la alumna lo ingrese en su portafolio.
También le recomendamos que solicite a su alumnado la elaboración de predicciones, por ejemplo: en grupos mixtos de cuatro niños o niñas salen al patio de la escuela para observar el cielo, las nubes (si estuviera nublado), sienten si hay aire o no, oyen el canto de los pájaros u otras señales y predicen si ese día lloverá o no, si lloverá mañana o no, si lloverá pasado mañana o no. Después del segundo día verifican la predicción que han hecho y justifican su predicción con todos los argumentos posibles.
Finalmente, le recomendamos que elabore una o varias escalas de valoración para analizar el avance de aprendizaje de los niños y niñas relacionado a juegos, reglamentos, recopilación de datos, presentación de información, por ejemplo:
Nombre del niño o de la niña: | ||||
Aspectos | Siempre | Casi siempre | Algunas veces | Nunca |
---|---|---|---|---|
Trabajó ordenadamente | ||||
Desarrolló trabajo en equipo | ||||
Respetó las normas del juego | ||||
Aportó ideas para modificar reglas de algún juego Identificó datos de algún problema | ||||
Realizó la o las operaciones adecuadamente | ||||
Siguió las instrucciones dadas | ||||
Puntualidad en la entrega de trabajos |
Recuerde que los aspectos a evaluar en una lista de cotejo o en una escala de valoración han de estar siempre estrechamente relacionados con los indicadores de logro ya que son estos lo que evalúan el alcance de la competencia.
Competencia 6: Identifica formas y relaciones de patrones y figuras geométricas vinculadas a su entorno familiar[editar | editar código]
Ir a la Tabla de Competencias para el Bloque 4
Contenidos de aprendizaje[editar | editar código]
Procedimentales | Declarativos | Actitudinales |
---|---|---|
|
Vocabulario básico: figuras geométricas planas (triángulos, rectángulos, rombos, etc.), figuras geométricas tridimensionales -cuerpos geométricos (cubos, prismas, cilindros, conos, esferas), simetría. |
|
Actividades sugeridas para el desarrollo de la competencia número 6[editar | editar código]
Actividad 1: Midiendo objetos[editar | editar código]
Organice a niños y niñas en grupos de 4 y pídales que calculen si un cuaderno tiene el mismo ancho y el mismo largo, comprobándolo. Para ello deben medir el largo y el ancho del cuaderno utilizando pita o lana, cuartas, gemes o brazadas. Finalmente, escriben en su cuaderno cuantas pitas u otra de las medidas sugeridas que hayan empleado miden el ancho y el largo.
En segundo lugar, pida a quienes integran el grupo que identifiquen objetos que tengan el mismo ancho y el mismo largo, comprobándolo, como en el caso anterior, a través de cualquier medida no estándar. Ahora, los niños y las niñas identifican (calculan) objetos que tengan de largo el doble de su ancho, comprobándolo respectivamente.
Por último, niños y niñas dibujarán o recortarán figuras geométricas diferentes que tengan las siguientes características:
o Igual ancho e igual largo, o Miden de ancho dos veces lo que miden de largo o Miden de largo dos veces lo que ancho de largo
Al finalizar cada grupo expondrá sus resultados ante sus compañeros (as).
Le sugerimos realizar varios ejercicios utilizando diferentes objetos que existan en la escuela o comunidad.
Actividad 2: Simetría en figuras geométricas[editar | editar código]
Solicite al alumnado que, en grupo, doblen una hoja a la mitad; luego, comprueban si las dos partes son iguales y buscan otras formas de doblar el papel formando siempre partes iguales. Marcan la línea de en medio con un lápiz o crayón. Los niños y niñas observan la división que se hizo con la línea marcada con el lápiz o crayón, que se denominará “eje de simetría”. Realice otros ejercicios utilizando otras figuras geométricas de lo más simple a lo complejo (ejemplo: cuadrado, rectángulo, círculo, triángulo, una estrella, etc.)
Recursos: Hojas de papel bond, regla, lápiz, crayones, figuras geométricas.
Le sugerimos que informe al alumnado que por este momento no se utilizará regla para medir. Inicie con ejercicios de simetría de lo más fácil y observe que tengan partes iguales. Realice ejercicios con figuras como por ejemplo: el dibujo de una mariposa, la figura de una persona, etc.
Actividad 3: Las figuras[editar | editar código]
Forme 2 grupos mixtos, formados por niñas y niños, llévelos al patio de la escuela, solicíteles que formen la distintas figuras geométricas (círculo, cuadrado, rectángulo, triángulo).
Seguidamente, forme grupos de 5, en cada grupo utilizarán hojas de periódico para elaborar diferentes figuras geométricas: círculo, cuadrado, rectángulo, triángulo, rombo (como mínimo 2 de cada figura). Con las mismas figuras geométricas, se les pide que formen otras figuras en el suelo (un barco, una casa, etc.).
Cada grupo pasará a observar las diferentes figuras formadas en el suelo. Seguidamente, los niños y las niñas deben encontrar las diferencias y semejanzas entre las figuras observadas (tamaño, color y otros).
Por último, pida que los grupos formen una frase u oración en relación a la figura elaborada y que dibujen en su cuaderno las diferentes figuras elaboradas.
Pregunte a los grupos: ¿Dónde han visto figuras geométricas? Pídales que hagan un listado de objetos familiares que tienen la forma de las figuras geométricas.
Le sugerimos que acompañe a los grupos en la elaboración de las figuras.
Actividad 4: El rincón de matemáticas[editar | editar código]
En grupos mixtos, organicen un espacio de figuras geométricas al que llamarán “Rincón de matemáticas”. Escriban en tiras de cartulina o papel periódico lo siguiente:
“Triángulos”, “Rectángulos”, “Rombos”, “Círculos”, “Cubos”, “Prismas”, “Cilindros”, “Conos”, “Esferas”. En cada tira de papel debe haber suficiente espacio para ubicar los objetos correspondientes. Los niños y las niñas buscan objetos que tengan la forma según lo escrito en el papel y los ubican según su nombre. Estos objetos pueden ser elaborados por ellos mismos u objetos que encuentran a su alrededor. Cada uno de los conceptos escritos en el papel deberá tener en su espacio los objetos que tengan esa forma. Los grupos podrán decidir, con la ayuda del maestro o maestra, todos los objetos según los nombres escritos en las tiras de papel o elegir un solo concepto y buscar los objetos respectivos.
Le sugerimos recordar que esta actividad requiere que los niños y niñas trabajen en grupos, sin embargo, para el manejo del vocabulario debe observarse la acción de cada uno de los niños y las niñas.
Es importante la organización de un rincón de matemáticas; tal como se sugiere en esta actividad, aproveche para fortalecer el vocabulario, así como otros aspectos para el desarrollo del aprendizaje de esta área.
Evaluación[editar | editar código]
Luego de trabajar los contenidos propuestos para el logro de la competencia por medio de las actividades sugeridas y aquellas diseñadas por usted, deberá llevar a cabo la evaluación, para comprobar si niñas y niños lograron alcanzar la competencia. Recordemos que la competencia número 6 dice: “Identifica formas y relaciones de patrones y figuras geométricas vinculadas a su entorno familiar”, le hacemos la siguiente propuesta de indicadores de logro que le permitirán evaluar la competencia:
- Indicadores de logro
- Utiliza de formas como cuadrado, triángulo, círculo para construir figuras geométricas planas.
- Establece semejanzas y diferencias entre diversas figuras geométricas planas: triángulos, cuadrados, rectángulos, rombos, según tamaño o forma.
- Identifica curvas y figuras geométricas planas en objetos utilizados en la comunidad.
- Identifica cuerpos geométricos como: cubos, prismas, cilindros, conos y esferas.
- Identifica simetría en figuras geométricas.
- Divide simétricamente figuras geométricas planas (cuadrado, rectángulo, triángulo, círculo, entre otras).
- Utiliza medidas no estándar para calcular perímetros de figuras geométricas planas.
- Utiliza adecuadamente vocabulario básico: figuras geométricas planas (triángulo s, rectángulos, rombos, etc.), figuras geométricas tridimensionales (cuerpos geométricos), cubos, prismas, cilindros, conos, esferas), simetría.
Para la verificación del logro de la competencia número 6, en función de los indicadores de logro arriba descritos, le proponemos las siguientes técnicas e instrumentos de evaluación:
Solicite a los diferentes grupos para que hagan un recorrido por toda la escuela y que cuenten la cantidad de figuras geométricas que tiene la construcción de la escuela y si todas tienen el mismo tamaño.
Que los niños y las niñas dibujen en su cuaderno 3 figuras de la misma forma y de diferentes tamaños.
Revise la actividad realizada por los grupos mixtos y verifique la ubicación de los objetos que hayan realizado según los conceptos escritos en las tiras de papel.
Seleccione otros objetos que pertenezcan a estos conceptos y pida a un niño o una niña que lo ubique en su respectivo lugar.
Recuerde emplear listas de cotejo, escalas de valoración y fichas de observación, ademas de otros registros para recabar la información recopilada en la evaluación. Es muy importante contar siempre con estos registros.
Competencia 7: Construye nuevos conocimientos a partir de nuevos modelos de la ciencia y la cultura[editar | editar código]
Ir a la Tabla de Competencias para el Bloque 4
Contenidos de aprendizaje[editar | editar código]
Procedimentales | Declarativos | Actitudinales |
---|---|---|
|
|
|
Actividades sugeridas para el desarrollo de la competencia número 7[editar | editar código]
Actividad : El tamaño de lo que observamos[editar | editar código]
Organice a niños y niñas en grupos mixtos de 5. Pida que observen sus manos, primero en forma individual y luego comparándolas con las del resto del grupo. Diga a sus estudiantes que comparen sus manos, puños, dedos con otras compañeras y compañeros y expresen lo que observaron (ejemplo: mi mano es más pequeña que la de...).
Realicen varios ejercicios de esta naturaleza para que vean las diferencias y similitudes entre quienes integran el grupo. Seguidamente, y en los mismos grupos, pida que midan la longitud de un objeto (libro, mesa, pizarrón, puerta, etc.), utilizando dedos, geme, puño, cuarta o brazada. Cada quien anotará en su cuaderno la medida que tiene el objeto utilizado.
Le sugerimos que realice varios ejercicios utilizando diferentes objetos que existan en la escuela o comunidad.
Actividad 2: ¿A cuánto la medida...?[editar | editar código]
Organice grupos mixtos de trabajo de 3 integrantes. Cada grupo llevará a la escuela un vaso, una botella, una botella de un litro vacía y una balanza construida por ellos y ellas (con material reciclable). La mitad de los grupos tendrán el rol de vendedoras y vendedores y la otra mitad de los grupos serán quienes compran.
En este momento no se utilizarán monedas; niños y niñas sólo han de encontrar una diferencia entre el producto que se vende por vaso, botella y productos que se venden por libra.
Por ejemplo: un grupo llegará a otro grupo y preguntarán ¿Qué venden por vaso?, ¿Qué venden por botella?, y ¿Qué venden por litro? El grupo al que se pregunta contará los productos que generalmente se venden utilizando estas medidas. Seguidamente y después de varios ejercicios se invertirán los roles.
Por último, pida a sus estudiantes que dibujen en su cuaderno de trabajo cada uno de los objetos que se utilizan para medidas de capacidad y peso. Pida que pregunten a sus familiares ¿Qué medidas estándar de longitud, capacitad y peso utilizan en su comunidad?, (metro, centímetro, pulgadas, vaso, botella, litro, libra, arroba y quintal).
Le sugerimos complementar la orientación de las medidas de capacidad y de peso para incluir la arroba y el quintal. Además, le aconsejamos que elabore instrumentos de medida de longitud y capacidad. Invite a una persona que tenga tienda para que dé a conocer qué medidas de longitud y capacidad utiliza. Realice visitas con su alumnado a alguna tienda de la comunidad para ampliar sus conocimientos y experiencias sobre este tema.
Actividad 3: Midamos el tiempo[editar | editar código]
Pida a cada niña y niño en su clase que elabore un reloj con material reciclable. Utilice el reloj ubicando horas exáctas, por ejemplo, 10:00 horas - hora de recreo 12:00 horas - medio día...
Presente ilustraciones en pliegos de papel manila en donde se establezcan acciones que ocurren en el hogar, por ejemplo, desayuno, almuerzo y cena.
Pida al alumnado que lleve un calendario con el mes de su preferencia. Pregunte: ¿Cuántas semanas tiene el mes?, ¿Qué día le correspondió la fecha 15?, ¿Cuántos jueves hay en el mes?, ¿Qué días van a la escuela?, ¿Cuántos días al mes no van a la escuela?, ¿Cuántos días tiene una semana o un mes?, ¿Cuántas horas tiene un día?, ¿Qué día es el mercado en su comunidad?...
Por último, desarrolle una lluvia de ideas, lanzando las preguntas: ¿En qué mes siembran maíz? ¿La siembra la hacen en época seca o lluviosa? ¿En qué mes o meses hace más calor? ¿En qué mes o meses hace más frío?
Le sugerimos que elabore tarjetas de secuencia de acciones conocidas (Herramienta pedagógica “¿Qué pasó después?” en donde se proporciona un juego de tarjetas por grupo (entre 3 y 4 acciones) para que lo asocien con eventos de la vida cotidiana.
Actividad 4: Los glifos mayas[editar | editar código]
Pida al grupo que elabore los glifos de los cuatro cargadores Mayas, utilizando una hoja de papel bond por cada glifo. Coloquen cada giflo en cuatro puntos diferentes dentro del aula. Elaboren también estos cuatro glifos en cuadros pequeños (5 x 5 cms).
La elaboración y utilización de los glifos pequeños dependerá de la cantidad de personas que se tengan en el grado, ya que esto servirá para la conformación de grupos de trabajo (por ejemplo: si hay 40 participantes se elaborarán 10 glifos de cada cargador). Se repartirán los glifos para la conformación de los grupos, utilizando para ello una caja de cartón pequeña para que cada quien tome un glifo. Al finalizar la repartición de los glifos, se les pedirá a niñas y niños que se agrupen según la figura de su glifo, ubicándose en la parte del aula en donde se encuentre el glifo a que pertenece.
Ubicados los cuatro grupos de trabajo, pídales que despeguen el glifo que se encuentra en la pared y procedan a leer lo que esta escrito en la parte de atrás. Luego de leer varias veces el significado del glifo, cada grupo pasará a exponer en forma oral en nombre y significado del cargador que le correspondió.
A continuación, le presentamos el significado de cada glifo de los cuatro cargadores del calendario Maya y cómo son las personas que tienen este nawal.
Be’
Camino, destino, guía. Camino de la vida. Potencialidades: comparten sus experiencias, son personas amables, trabajadoras, que conducen el destino de un pueblo o comunidad. Riesgos: son personas andariegas, inseguras, no toman decisiones con rapidez. | |
No’j
Sabiduría, fuerza mental. El pájaro carpintero es su anuncio. Potencialidades: buenas administradoras, sabias, inteligentes, consejeras, ideólogas, científicas, ordenadas, seguras de sí mismas, creativas, humanistas de gran talento, maestras. Riesgos: delicadas, enojadas, autoritarias, autosuficientes, prepotentes. | |
Iq’
Aire, viento, vida, huracán y soplo, piedra sagrada. Potencialidades: son personas vitales, imaginativas, fuertes, soñadoras, comerciantes, asumen altos puestos. Riesgos: coléricas, violentas, biliosas, inconstantes, impositivas y negligentes. | |
Kej
Venado, autoridad. Nawal del hombre y de la familia. Potencialaidades: son personas fuertes, seguras de sí mismas, convincentes, amables, comunicativas, consejeras, guías espirituales. Riesgos: Enojadas, exigentes, enamoradas, cautivadoras. |
Le sugerimos que asocie el significado de los cargadores Mayas con su vida personal.
Investigue sobre otros elementos inmersos en el calendario Maya.
Actividad 5: Fabriquemos monedas[editar | editar código]
Las niñas y los niños utilizando una moneda de cualquier valor, un lápiz y una hoja de su cuaderno, calcarán las dos caras de la moneda (colocarán la moneda debajo de la hoja y encima, con el lápiz, la repasarán suavemente hasta observar la figura de las dos caras de la moneda).
Posteriormente, intercambiarán monedas hasta reproducir las figuras de las seis monedas diferentes. (1,5,10,25,50 centavos y un quetzal). Quienes desean obtener el dibujo de más monedas, dibujarán en una hoja en blanco todas las monedas que quieran y las utilizarán en un juego de comprar y vender (tienda escolar).
Organice a su alumnado para participar activamente en el juego de “Mi tienda”.
Le sugerimos que profundice la relación uno a uno (correspondencia biunívoca) en la actividad de la tienda. Indique que para cada artículo o producto que compren los niños y las niñas, esto tiene un solo valor.
Aproveche la utilización de las monedas para reforzar la idea y escritura del número 10 (cambiando diez monedas de un centavo por una moneda de 10 centavos, y 10 monedas de 10 centavos por una moneda de 1 quetzal o cien centavos).
Elaboren un vocabulario de términos matemáticos de todos los contenidos posibles, escribiéndolos en un papelógrafo.
Actividad 6: Midamos en unidades de cuartas, gemes y brazadas[editar | editar código]
Forme grupos de 5 niños y niñas. Distribuya una pita, bejuco o lazo de longitud de 3 metros como mínimo a cada grupo.
Que alguien de cada grupo, a la cuenta de 3 (1,2,3) mida la longitud de la pita, bejuco o lazo: primero en brazada, luego en cuarta (longitud de la extensión entre el dedo pulgar y el meñique de la mano derecha o izquierda), luego en gemes (longitud de la extensión entre el dedo pulgar y el índice).
Observe qué grupo hace con más rapidez cada una de las medidas. Pida a su alumnado que encuentre la diferencia entre: cuarta, geme y brazada. Pida a niños y niñas en sus grupos que decidan cuál de las tres medidas utilizaría para medir una pared, una mesa y una caja, respectivamente, y por qué.
Cierre la actividad, informándo a los niños y las niñas que la medida es relativa dependiendo del crecimiento del ser humano.
Evaluación[editar | editar código]
Despúes de haber trabajado los contenidos propuestos para el logro de la competencia por medio de las actividades sugeridas y aquellas diseñadas por usted, deberá llevar a cabo la evaluación, para comprobar si niñas y niños lograron alcanzar la competencia. Recordemos que la competencia número 7 dice: “Construye nuevos conocimientos a partir de nuevos modelos de la ciencia y la cultura”, le hacemos la siguiente propuesta de indicadores de logro que le permitirán evaluar la competencia:
- Indicadores de logro
- Utiliza medidas de longitud no estándar: puño, geme, brazada.
- Utiliza medidas de capacidad con diferentes objetos para determinar su medida de pesantez.
- Asocia ilustraciones de eventos de la vida cotidiana con la hora en que normalmente ocurren en el entorno inmediato.
- Utiliza la hora, el día, la semana y el mes como unidades de medida convencionales de tiempo.
- Identifica los 4 cargadores del calendario Maya.
- Determina períodos: día, semana, mes, año.
- Identifica situaciones del año en función del calendario de actividades en la comunidad: época seca, época lluviosa, época calurosa, época fría, época de siembra, etc.
- Utiliza las monedas y del concepto de compra y venta en simulación de mercado, tienda, etc.
- Lee y escribe cantidades de dinero utilizando números naturales menores que o iguales a 100.
- Utiliza adecuadamente el vocabulario básico longitud, capacidad, puño, geme, cuarta, brazada, vaso, botella, litro, hora, día, semana, mes, moneda, cargadores del calendario Maya.
Para la verificación del logro de la competencia número 7, en función de los indicadores de logro arriba descritos, le proponemos que realice algunas pruebas objetivas como esta que le sugerimos a continuación:
Distribuya a cada grupo una hoja de papel bond conteniendo las siguientes preguntas:
- ¿Cuántas monedas de un centavo hacen un quetzal?
- ¿Cuántas monedas de cinco centavos hacen un quetzal?
- ¿Cuántas monedas de 10 centavos hacen un quetzal?
- ¿Cuántas monedas de 25 centavos hacen un quetzal?
- ¿Cuántas monedas de cincuenta centavos hacen un quetzal?
- ¿Cuánto monedas de 25, de 10 y de 5 centavos juntas, hacen un quetzal?
También puede realizar pruebas consistentes en calcular la longitud de una figura geométrica utilizando medida no estándar o que utilice medidas de capacidad con diferentes objetos para determinar su medida.
También puede perdir que ubique en un calendario los días que asiste a la escuela.
Por último, puede solicitar a los diferentes grupos que realicen actividades como hacer un recorrido por toda la escuela y contar la cantidad de figuras geométricas que tiene la construcción de la escuela, observando si todas esas formas tienen el mismo tamaño. Recuerde que debe observar la participación de las niñas y los niños que integran cada grupo y registrar las mediciones que hagan de los indicadores por medio de listas de cotejo, escalas de valoración o fichas de observación, específicas para cada alumna o alumno.
Bibliografía[editar | editar código]
MINEDUC, DIGEBI (1997). Matemática, Guía Didáctica de Primer grado. Guatemala.
MINEDUC (1997). Material de apoyo para el desarrollo de la enseñanza-aprendizaje de la matemática. Guatemala.
MINEDUC (2001). Módulos de aprendizaje primer grado volumen 1. Guatemala.
MINEDUC (2001). ABC de la matemática: cantidades 0-20, primera etapa. Guatemala.
MINEDUC (2001). ABC de la matemática: cantidades 0-20, segunda etapa. Guatemala.
MINEDUC. Guía para la utilización de estándares. Guatemala Intercultural, nivel primario. Guatemala 2003.
Frintzen, José Silvino (1982). Juegos dirigidos. Editora Vozes Ltda. Bogotá, Colombia.
Rencoret Bustos, María del Carmen (1995). Iniciación matemática. Editorial Andrés Bello.
Stendler Lavatelli, Celia (1972). Guía para el maestro para acompañar el plan de estudios para niños de temprana edad, un programa de Piaget. EEUU.
Baroody, Arthur J. (1988) El pensamiento matemático de los niños. Traducciónde Genís Sánchez. España.
Brandeth Gyles (1999). Juegos con números. Editorial GEDISA. Barcelona, España.